Struct std::vec::Vec 1.0.0[−][src]
pub struct Vec<T> { /* fields omitted */ }連続する拡張可能な配列型。Vec<T>と書かれますが「ベクター」と発音されます。
Examples
let mut vec = Vec::new(); vec.push(1); vec.push(2); assert_eq!(vec.len(), 2); assert_eq!(vec[0], 1); assert_eq!(vec.pop(), Some(2)); assert_eq!(vec.len(), 1); vec[0] = 7; assert_eq!(vec[0], 7); vec.extend([1, 2, 3].iter().cloned()); for x in &vec { println!("{}", x); } assert_eq!(vec, [7, 1, 2, 3]);Run
初期化を便利にするためにvec!マクロが提供されています:
let mut vec = vec![1, 2, 3]; vec.push(4); assert_eq!(vec, [1, 2, 3, 4]);Run
vec!マクロによって、与えられた値からVec<T>の各要素を初期化することもできます:
let vec = vec![0; 5]; assert_eq!(vec, [0, 0, 0, 0, 0]);Run
Vec<T>を効率的なスタックとして使ってください:
let mut stack = Vec::new(); stack.push(1); stack.push(2); stack.push(3); while let Some(top) = stack.pop() { // 3, 2, 1をプリントします println!("{}", top); }Run
インデクシング
Vec型はIndexトレイトを実装しているので、インデックスを使って値にアクセスすることができます。次の例はより明白でしょう:
let v = vec![0, 2, 4, 6]; println!("{}", v[1]); // 「2」を表示しますRun
しかし注意してください: Vecに含まれないインデックスにアクセスしようとすると、あなたのソフトウェアはパニックします!このようなことはできません:
let v = vec![0, 2, 4, 6]; println!("{}", v[6]); // パニックします!Run
結論: インデクシングの前にそのインデックスが本当に存在するかを常に確認してください。
スライシング
Vecはミュータブルになり得ます。一方、スライスは読み取り専用オブジェクトです。スライスを得るには、&を使ってください。例:
fn read_slice(slice: &[usize]) { // ... } let v = vec![0, 1]; read_slice(&v); // ... そしてこれだけです! // このようにもできます: let x : &[usize] = &v;Run
Rustにおいて、単に読み取りアクセスできるようにしたいときはベクターよりもスライスを引数として渡すことが一般的です。Stringと&strについても同様です。
容量とメモリの再確保
ベクターの容量 (capacity) とは将来ベクターに追加される要素のためにアロケートされる領域の量のことです。これをベクターの長さ (length) と混同しないでください。ベクターの長さとはそのベクターに入っている実際の要素の個数のことです。ベクターの長さが容量を超えると、容量は自動的に増えますが、その要素は再確保されなければなりません。
例えば、容量10で長さ0のベクターは追加10要素分の領域をもった空のベクターです。10またはそれ以下の要素をベクターにプッシュしてもベクターの容量は変わりませんし、メモリの再確保も起きません。しかし、ベクターの長さが11まで増加すると、ベクターはメモリを再確保しなければならず、遅いです。このため、ベクターがどれだけ大きくなるかが予期できるときは常にVec::with_capacityを利用することが推奨されます。
保証
その信じられないほど基本的な性質のために、Vecはデザインについて多くのことを保証します。Vecは可能な限りロー・オーバーヘッドであり、アンセーフコードからプリミティブな方法で正しく操作することができます。これらの保証は制限のないVec<T>を指すことに注意してください。もし追加の型パラメータが追加されれば (例えばカスタムアロケータのサポートのために)、Vecのデフォルトを上書きすることで動作が変わるかもしれません。
最も基本的なこととして、Vecは (ポインタ, 容量, 長さ) の三つ組であり将来的にも常にそうです。それ以上でも以下でもありません。これらのフィールドの順序は完全に未規定であり、その値を変更するためには適切なメソッドを使うべきです。ポインタは決してヌルにはなりません。ですので、この型はヌルポインタ最適化されます。
しかし、ポインタは実際には確保されたメモリを指さないかもしれません。特に、空のベクターの作成をVec::newやvec![]やVec::with_capacity(0)により行ったり、shrink_to_fitの空のベクターでの呼び出しから行ったりするとき、メモリを確保しません。同様に、ゼロサイズ型をVecに格納するとき、それらのための領域を確保しません。この場合Vecはcapacityがゼロであると伝えないかもしれないことに注意してください。Vecはmem::size_of::<T>() * capacity() > 0のとき、またそのときに限りメモリを確保します。一般に、Vecのアロケーションの詳細はとても微妙です — もしVecを使ってメモリを確保し他の何か (アンセーフコードに渡す、またはメモリが背後にあるあなた自身のコレクションのいずれか) に使うつもりなら、必ずfrom_raw_partsを使ってVecを復元しドロップすることでそのメモリを解放してください。
Vecがメモリを確保しているとき、Vecが指すメモリはヒープにあり (Rustがデフォルトで使うよう設定されたアロケータによって定義されるように) 、ポインタはlen個の初期化された、連続する (スライスに強制したときと同じ) 順に並んだ要素を指し、capacity-len個の論理的な初期化がされていない、連続する要素が後続します。
Vecは要素を実際にはスタックに格納する"small optimization"を決して行いません。それは2つの理由のためです:
- アンセーフコードが
Vecを扱うことを難しくします。Vecが単にムーブされるときVecの中身は安定したアドレスを持たないでしょう。そしてVecが実際に確保されたメモリを持っているかを決定することが難しくなるでしょう。
- アクセス毎に追加の分岐を招くことで、一般的な状況で不利になるでしょう。
Vecは決して自動で縮みません。まったく空のときでさえもです。これによりメモリの不要な確保や解放が発生しないことが確実になります。Vecを空にし、それから同じlen以下まで埋め直すことがアロケータへの呼び出しを招くことは決してありません。もし使われていないメモリを解放したいなら、shrink_to_fitを使ってください。
通知された容量が十分なときpushとinsertは絶対にメモリを(再)確保しません。pushとinsertはlen==capacityのときメモリを(再)確保します。つまり、知らされる容量は完全に正確で、信頼することができます。必要に応じてVecによって確保されたメモリを手動で解放することもできます。バラバラに挿入するメソッドは必要がない場合もメモリの再確保をしてしまうかもしれません。
Vecは満杯になったときやreserveが呼び出されたときにメモリの再確保をする際の特定の拡張戦略をまったく保証しません。現在の戦略は基本的であり、定数でない増大係数が望ましいことが証明されるかもしれません。どのような戦略を使うとしても当然pushが償却O(1)であることは保証されます。
vec![x; n]とvec![a, b, c, d]とVec::with_capacity(n)は全て正確に要求した容量を持つVecを提供します。(vecマクロの場合のように) len==capacityならば、Vec<T>はメモリの再確保や要素の移動なしにBox<[T]>と相互に変換できます。
Vecは特に取り除かれたデータを上書きするとは限りませんが、特に取っておくとも限りません。未初期化メモリは必要ならばいつでもVecが使ってよい一時領域です。Vecは一般に最も効率がいいような、または実装しやすいような動作をします。セキュリティ目的で取り除かれたデータが消去されることを頼ってはいけません。Vecをドロップしたとしても、そのVecのバッファは他のVecに再利用されるかもしれません。Vecのメモリを最初にゼロにしたとしても、オプティマイザが保護すべき副作用だと考えないためにそれが実際には起こらないかもしれません。しかしながら、私達が破壊しないであろうケースが一つあります: unsafeコードを使って過剰分の容量に書き込んでから、それに合うように長さを増加させることは常に正当です.
Vecは現在、要素をドロップする順序を保証しません。過去に順序を変更したことがあり、また変更するかもしれません。
Methods
impl<T> Vec<T>[src]
impl<T> Vec<T>pub const fn new() -> Vec<T>[src]
pub const fn new() -> Vec<T>pub fn with_capacity(capacity: usize) -> Vec<T>[src]
pub fn with_capacity(capacity: usize) -> Vec<T>新しい空のVec<T>を指定された容量で作成します。
返されたベクターはメモリの再確保なしにちょうどcapacity個の要素を格納することができます。capacityが0ならばメモリを確保しません。
返されたベクターは指定された容量を持ちますが、長さが0であることに注意することが大切です。長さと容量の違いの説明については*容量とメモリの再確保*を参照してください。
Examples
let mut vec = Vec::with_capacity(10); // 0より大きい容量を持ちますが、要素は持ちません。 assert_eq!(vec.len(), 0); これらは全てメモリの再確保なしに行われます... for i in 0..10 { vec.push(i) } // ...しかしこれはメモリを再確保するかもしれません vec.push(11);Run
pub unsafe fn from_raw_parts(
ptr: *mut T,
length: usize,
capacity: usize
) -> Vec<T>[src]
pub unsafe fn from_raw_parts(
ptr: *mut T,
length: usize,
capacity: usize
) -> Vec<T>Vec<T>を他のベクターの生の構成要素から直接作成します。
Safety
このメソッドは非常にアンセーフです。いくつものチェックされない不変量があるためです:
ptrは以前にString/Vec<T>で確保されいる必要があります (少なくともそうでなければ非常に不適切です)。ptrのTはアロケートされたときと同じサイズ、同じアラインメントである必要があります。lengthはcapacity以下である必要があります。capacityはポインタがアロケートされたときの容量である必要があります。
これらに違反すると、アロケータの内部データ構造を破壊することになるかもしれません。例えばVec<u8>をCのchar配列とsize_tから作成することは安全ではありません。
ptrの所有権は有効にVec<T>に移り、そのVec<T>は思うままにメモリの破棄や再確保やポインタの指すメモリの内容の変更する権利を得ます。この関数を呼んだ後にポインタを使うことがないことを確実にしてください。
Examples
use std::ptr; use std::mem; fn main() { let mut v = vec![1, 2, 3]; // さまざまな`v`の情報の重要な断片を抜き出します let p = v.as_mut_ptr(); let len = v.len(); let cap = v.capacity(); unsafe { // `v`をvoidにキャストします: デストラクタは走りません。 // よって`p`が指す確保されたメモリを完全に管理することになります。 mem::forget(v); // メモリを4, 5, 6で上書きします for i in 0..len as isize { ptr::write(p.offset(i), 4 + i); } // 全てを合わせてVecに戻します let rebuilt = Vec::from_raw_parts(p, len, cap); assert_eq!(rebuilt, [4, 5, 6]); } }Run
pub fn capacity(&self) -> usize[src]
pub fn capacity(&self) -> usizeベクターがメモリの再確保なしに保持することのできる要素の数を返します。
Examples
let vec: Vec<i32> = Vec::with_capacity(10); assert_eq!(vec.capacity(), 10);Run
pub fn reserve(&mut self, additional: usize)[src]
pub fn reserve(&mut self, additional: usize)少なくともadditional個の要素与えられたVec<T>に挿入できるように容量を確保します。コレクションは頻繁なメモリの再確保を避けるために領域を多めに確保するかもしれません。reserveを呼び出した後、容量はself.len() + addtional以上になります。容量が既に十分なときは何もしません。
Panics
新たな容量がusizeに収まらないときパニックします。
Examples
let mut vec = vec![1]; vec.reserve(10); assert!(vec.capacity() >= 11);Run
pub fn reserve_exact(&mut self, additional: usize)[src]
pub fn reserve_exact(&mut self, additional: usize)ちょうどadditional個の要素を与えられたVec<T>に挿入できるように最低限の容量を確保します。reserve_exactを呼び出した後、容量はself.len() + additional以上になります。容量が既に十分なときは何もしません。
アロケータは要求したより多くの領域を確保するかもしれないことに注意してください。そのためキャパシティが正確に最低限であることに依存することはできません。将来の挿入が予期される場合reserveのほうが好ましいです。
Panics
新たな容量がusizeに収まらないときパニックします。
Examples
let mut vec = vec![1]; vec.reserve_exact(10); assert!(vec.capacity() >= 11);Run
pub fn try_reserve(
&mut self,
additional: usize
) -> Result<(), CollectionAllocErr>[src]
pub fn try_reserve(
&mut self,
additional: usize
) -> Result<(), CollectionAllocErr>🔬 This is a nightly-only experimental API. (try_reserve #48043)
new API
少なくともadditional個の要素を与えられたVec<T>に挿入できるように容量を確保することを試みます。コレクションは頻繁なリメモリの再確保を避けるために領域を多めに確保するかもしれません。reserveを呼び出した後、容量はself.len() + addtional以上になります。容量が既に十分なときは何もしません。
Errors
容量がオーバーフローする、またはアロケータが失敗を通知するときエラーを返します。
Examples
#![feature(try_reserve)] use std::collections::CollectionAllocErr; fn process_data(data: &[u32]) -> Result<Vec<u32>, CollectionAllocErr> { let mut output = Vec::new(); // 予めメモリを確保し、できなければ脱出する output.try_reserve(data.len())?; // 今、これが複雑な作業の途中でOOMし得ないことがわかっています // Now we know this can't OOM in the middle of our complex work output.extend(data.iter().map(|&val| { val * 2 + 5 // すごく複雑 })); Ok(output) }Run
pub fn try_reserve_exact(
&mut self,
additional: usize
) -> Result<(), CollectionAllocErr>[src]
pub fn try_reserve_exact(
&mut self,
additional: usize
) -> Result<(), CollectionAllocErr>🔬 This is a nightly-only experimental API. (try_reserve #48043)
new API
ちょうどadditional個の要素与えられたVec<T>に挿入できるように最低限の容量を確保することを試みます。コレクションは頻繁なメモリの再確保を避けるために領域を多めに確保するかもしれません。reserve_exactを呼び出した後、容量はself.len() + addtional以上になります。容量が既に十分なときは何もしません。
アロケータは要求したより多くの領域を確保するかもしれないことに注意してください。そのためキャパシティが正確に最小であることに依存することはできません。将来の挿入が予期される場合reserveのほうが好ましいです。
Errors
容量がオーバーフローする、またはアロケータが失敗を通知するときエラーを返します。
Examples
#![feature(try_reserve)] use std::collections::CollectionAllocErr; fn process_data(data: &[u32]) -> Result<Vec<u32>, CollectionAllocErr> { let mut output = Vec::new(); // 予めメモリを確保し、できなければ脱出する output.try_reserve(data.len())?; // 今、これが複雑な作業の途中でOOMし得ないことがわかっています // Now we know this can't OOM in the middle of our complex work output.extend(data.iter().map(|&val| { val * 2 + 5 // すごく複雑 })); Ok(output) }Run
pub fn shrink_to_fit(&mut self)[src]
pub fn shrink_to_fit(&mut self)ベクターの容量を可能な限り縮小します。
可能な限り長さの近くまで領域を破棄しますが、アロケータはまだ少し要素を格納できる領域があるとベクターに通知するかもしれません。
Examples
let mut vec = Vec::with_capacity(10); vec.extend([1, 2, 3].iter().cloned()); assert_eq!(vec.capacity(), 10); vec.shrink_to_fit(); assert!(vec.capacity() >= 3);Run
pub fn shrink_to(&mut self, min_capacity: usize)[src]
pub fn shrink_to(&mut self, min_capacity: usize)🔬 This is a nightly-only experimental API. (shrink_to)
new API
下限付きでベクターを縮小します。
容量は最低でも長さと与えられた値以上になります。
現在の容量が与えられた値より小さい場合パニックします。
Examples
#![feature(shrink_to)] let mut vec = Vec::with_capacity(10); vec.extend([1, 2, 3].iter().cloned()); assert_eq!(vec.capacity(), 10); vec.shrink_to(4); assert!(vec.capacity() >= 4); vec.shrink_to(0); assert!(vec.capacity() >= 3);Run
ⓘImportant traits for Box<I>pub fn into_boxed_slice(self) -> Box<[T]>[src]
pub fn into_boxed_slice(self) -> Box<[T]>ベクターをBox<[T]>に変換します。
このメソッドが余剰の容量を落とすことに注意してください。
Examples
let v = vec![1, 2, 3]; let slice = v.into_boxed_slice();Run
余剰の容量は取り除かれます:
let mut vec = Vec::with_capacity(10); vec.extend([1, 2, 3].iter().cloned()); assert_eq!(vec.capacity(), 10); let slice = vec.into_boxed_slice(); assert_eq!(slice.into_vec().capacity(), 3);Run
pub fn truncate(&mut self, len: usize)[src]
pub fn truncate(&mut self, len: usize)初めのlen個の要素を残し、残りを捨てることでベクターを短くします。
lenがベクターの現在の長さより大きいときは何の効果もありません。
drainメソッドはtruncateをエミュレートできますが、余剰の要素を捨てる代わりに返すことになります。
このメソッドはベクターの確保された容量に影響しないことに注意してください。
Examples
五要素のベクターの二要素への切り詰め:
let mut vec = vec![1, 2, 3, 4, 5]; vec.truncate(2); assert_eq!(vec, [1, 2]);Run
lenがベクターの現在の長さより大きいときは切り詰めが起きません:
let mut vec = vec![1, 2, 3]; vec.truncate(8); assert_eq!(vec, [1, 2, 3]);Run
len == 0のときの切り詰めはclearの呼び出しと同値です。
let mut vec = vec![1, 2, 3]; vec.truncate(0); assert_eq!(vec, []);Run
pub fn as_slice(&self) -> &[T]1.7.0[src]
pub fn as_slice(&self) -> &[T]ベクター全体を含むスライスを抜き出します。
&s[..]と同値です。
Examples
use std::io::{self, Write}; let buffer = vec![1, 2, 3, 5, 8]; io::sink().write(buffer.as_slice()).unwrap();Run
pub fn as_mut_slice(&mut self) -> &mut [T]1.7.0[src]
pub fn as_mut_slice(&mut self) -> &mut [T]ベクター全体のミュータブルなスライスを抜き出します。
&mut s[..]と同値です。
Examples
use std::io::{self, Read}; let mut buffer = vec![0; 3]; io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();Run
pub unsafe fn set_len(&mut self, len: usize)[src]
pub unsafe fn set_len(&mut self, len: usize)ベクターの長さを設定します。
このメソッドは明示的にベクターの大きさを設定し、実際にはバッファを変更しません。 よって呼び出し元はベクターが実際に指定された大きさを持つことを保証する義務があります。
Examples
use std::ptr; let mut vec = vec!['r', 'u', 's', 't']; unsafe { ptr::drop_in_place(&mut vec[3]); vec.set_len(3); } assert_eq!(vec, ['r', 'u', 's']);Run
この例ではメモリリークがあります。内部のベクターが所有するメモリ上の位置がset_lenの呼び出しの前に解放されていないからです:
let mut vec = vec![vec![1, 0, 0], vec![0, 1, 0], vec![0, 0, 1]]; unsafe { vec.set_len(0); }Run
この例ではまったくメモリ確保を起こさずにゼロ個から四個にベクターを拡張することによって、確保されていないメモリがベクターの値になっています:
let mut vec: Vec<char> = Vec::new(); unsafe { vec.set_len(4); }Run
pub fn swap_remove(&mut self, index: usize) -> T[src]
pub fn swap_remove(&mut self, index: usize) -> Tベクターから要素を取り除き、その要素を返します。
取り除かれた要素はベクターの最後の要素に置き換えられます。
このメソッドは順序を保ちませんが、O(1)です。
Panics
indexが境界の外にあるときパニックします。
Examples
let mut v = vec!["foo", "bar", "baz", "qux"]; assert_eq!(v.swap_remove(1), "bar"); assert_eq!(v, ["foo", "qux", "baz"]); assert_eq!(v.swap_remove(0), "foo"); assert_eq!(v, ["baz", "qux"]);Run
pub fn insert(&mut self, index: usize, element: T)[src]
pub fn insert(&mut self, index: usize, element: T)後続する全ての要素を右側に移動して、要素をベクターのindexの位置に挿入します。
Panics
index > lenのときパニックします。
Examples
let mut vec = vec![1, 2, 3]; vec.insert(1, 4); assert_eq!(vec, [1, 4, 2, 3]); vec.insert(4, 5); assert_eq!(vec, [1, 4, 2, 3, 5]);Run
pub fn remove(&mut self, index: usize) -> T[src]
pub fn remove(&mut self, index: usize) -> Tベクターのindexの位置にある要素を取り除き、返します。後続するすべての要素は左に移動します。
Panics
indexが教会の外にあるときパニックします。
Examples
let mut v = vec![1, 2, 3]; assert_eq!(v.remove(1), 2); assert_eq!(v, [1, 3]);Run
pub fn retain<F>(&mut self, f: F) where
F: FnMut(&T) -> bool, [src]
pub fn retain<F>(&mut self, f: F) where
F: FnMut(&T) -> bool, 命題で指定された要素だけを残します。
言い換えると、f(&e)がfalseを返すような全てのeを取り除きます。このメソッドはインプレースで動作し、残った要素の順序を保ちます。
Examples
let mut vec = vec![1, 2, 3, 4]; vec.retain(|&x| x%2 == 0); assert_eq!(vec, [2, 4]);Run
pub fn dedup_by_key<F, K>(&mut self, key: F) where
F: FnMut(&mut T) -> K,
K: PartialEq<K>, 1.16.0[src]
pub fn dedup_by_key<F, K>(&mut self, key: F) where
F: FnMut(&mut T) -> K,
K: PartialEq<K>, ベクター内の同じキーが解決される連続した要素から先頭以外全てを取り除きます。
ベクターがソートされているとき、このメソッドは全ての重複を取り除きます。
Examples
let mut vec = vec![10, 20, 21, 30, 20]; vec.dedup_by_key(|i| *i / 10); assert_eq!(vec, [10, 20, 30, 20]);Run
pub fn dedup_by<F>(&mut self, same_bucket: F) where
F: FnMut(&mut T, &mut T) -> bool, 1.16.0[src]
pub fn dedup_by<F>(&mut self, same_bucket: F) where
F: FnMut(&mut T, &mut T) -> bool, ベクター内の与えられた等価関係を満たす連続する要素から先頭以外全てを取り除きます。
same_bucket関数はベクターから二つの要素を渡され、その要素を比較して等しいときtrueを返し、そうでないときfalseを返します。
要素はベクター内での順と逆の順で渡されるので、same_bucket(a, b)がtrueを返すとき、aが取り除かれます。
ベクターがソートされているとき、このメソッドは全ての重複を取り除きます。
Examples
let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"]; vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b)); assert_eq!(vec, ["foo", "bar", "baz", "bar"]);Run
pub fn push(&mut self, value: T)[src]
pub fn push(&mut self, value: T)要素をコレクションの後方に加えます。
Panics
ベクター内の要素の数がusizeに収まらない場合パニックします。
Examples
let mut vec = vec![1, 2]; vec.push(3); assert_eq!(vec, [1, 2, 3]);Run
pub fn pop(&mut self) -> Option<T>[src]
pub fn pop(&mut self) -> Option<T>Removes the last element from a vector and returns it, or None if it
is empty.
Examples
let mut vec = vec![1, 2, 3]; assert_eq!(vec.pop(), Some(3)); assert_eq!(vec, [1, 2]);Run
pub fn append(&mut self, other: &mut Vec<T>)1.4.0[src]
pub fn append(&mut self, other: &mut Vec<T>)otherの要素を全てSelfに移動し、otherを空にします。
Panics
ベクターの要素の数がusizeに収まらない場合パニックします。
Examples
let mut vec = vec![1, 2, 3]; let mut vec2 = vec![4, 5, 6]; vec.append(&mut vec2); assert_eq!(vec, [1, 2, 3, 4, 5, 6]); assert_eq!(vec2, []);Run
ⓘImportant traits for Drain<'a, T>pub fn drain<R>(&mut self, range: R) -> Drain<T> where
R: RangeBounds<usize>, 1.6.0[src]
pub fn drain<R>(&mut self, range: R) -> Drain<T> where
R: RangeBounds<usize>, ベクター内の指定された区間を取り除き、取り除かれた要素を与える排出イテレータを作成します。
注1: イテレータが部分的にだけ消費される、またはまったく消費されない場合も区間内の要素は取り除かれます。
注2: Drainの値がリークしたとき、ベクターから要素がいくつ取り除かれるかは未規定です。
Panics
始点が終点より大きい、または終了位置がベクターの長さより大きいときパニックします。
Examples
let mut v = vec![1, 2, 3]; let u: Vec<_> = v.drain(1..).collect(); assert_eq!(v, &[1]); assert_eq!(u, &[2, 3]); // 全区間でベクターをクリアします v.drain(..); assert_eq!(v, &[]);Run
pub fn clear(&mut self)[src]
pub fn clear(&mut self)全ての値を取り除き、ベクターを空にします。
このメソッドは確保された容量に影響を持たないことに注意してください。
Examples
let mut v = vec![1, 2, 3]; v.clear(); assert!(v.is_empty());Run
pub fn len(&self) -> usize[src]
pub fn len(&self) -> usizepub fn is_empty(&self) -> bool[src]
pub fn is_empty(&self) -> boolベクターが要素を持たないときtrueを返します。
Examples
let mut v = Vec::new(); assert!(v.is_empty()); v.push(1); assert!(!v.is_empty());Run
pub fn split_off(&mut self, at: usize) -> Vec<T>1.4.0[src]
pub fn split_off(&mut self, at: usize) -> Vec<T>コレクションを与えられたインデックスで二つに分割します。
新たにアロケートされたSelfを返します。selfは[0, at)の要素を含み、返されたSelfは[at, len)の要素を含みます。
selfの容量は変わらないことに注意してください。
Panics
at > lenのときパニックします。
Examples
let mut vec = vec![1,2,3]; let vec2 = vec.split_off(1); assert_eq!(vec, [1]); assert_eq!(vec2, [2, 3]);Run
pub fn resize_with<F>(&mut self, new_len: usize, f: F) where
F: FnMut() -> T, [src]
pub fn resize_with<F>(&mut self, new_len: usize, f: F) where
F: FnMut() -> T, Vecをlenとnew_lenが等しくなるようにインプレースでリサイズします。
new_lenがlenよりも大きいときVecは差の分だけ拡張され、追加された場所はクロージャfを呼び出した結果で埋められます。fの戻り値は生成された順にVecに入ります。
new_lenがlenより小さいときVecは単に切り詰められます。
このメソッドはプッシュ毎にクロージャを使用して新しい値を作成します。与えられた値をCloneするほうが望ましい場合はresizeを使用してください。値を生成するのにDefaultを使いたい場合はDefault::default()を第二引数として渡すことができます。
Examples
#![feature(vec_resize_with)] let mut vec = vec![1, 2, 3]; vec.resize_with(5, Default::default); assert_eq!(vec, [1, 2, 3, 0, 0]); let mut vec = vec![]; let mut p = 1; vec.resize_with(4, || { p *= 2; p }); assert_eq!(vec, [2, 4, 8, 16]);Run
impl<T> Vec<T> where
T: Clone, [src]
impl<T> Vec<T> where
T: Clone, pub fn resize(&mut self, new_len: usize, value: T)1.5.0[src]
pub fn resize(&mut self, new_len: usize, value: T)Vecをlenとnew_lenが等しくなるようにインプレースでリサイズします。
new_lenがlenよりも大きいときVecは差の分だけ拡張され、追加分の位置はvalueで埋められます。new_lenがlenより小さいときVecは単に切り詰められます。
このメソッドは与えられた値を複製するためにCloneを要求します。もっと柔軟であることを求めるなら (またはCloneの代わりにDefaultに依存したいなら)、resize_withを使用してください。
Examples
let mut vec = vec!["hello"]; vec.resize(3, "world"); assert_eq!(vec, ["hello", "world", "world"]); let mut vec = vec![1, 2, 3, 4]; vec.resize(2, 0); assert_eq!(vec, [1, 2]);Run
pub fn extend_from_slice(&mut self, other: &[T])1.6.0[src]
pub fn extend_from_slice(&mut self, other: &[T])スライスのすべての要素を複製しVecに追加します。
スライスotherの各要素を複製し、そしてそれをVecに追加します。otherは順番に反復されます。
この関数はスライスと共に動作することに特殊化していることを除いてextendと同じであることに注意してください。
もしRustが特殊化 (訳注: specialization) を得た場合、この関数は恐らく非推奨になります (しかしそれでも利用は可能です)。
Examples
let mut vec = vec![1]; vec.extend_from_slice(&[2, 3, 4]); assert_eq!(vec, [1, 2, 3, 4]);Run
impl<T> Vec<T> where
T: Default, [src]
impl<T> Vec<T> where
T: Default, pub fn resize_default(&mut self, new_len: usize)[src]
pub fn resize_default(&mut self, new_len: usize)Vecをlenとnew_lenが等しくなるようにインプレースでリサイズします。
new_lenがlenよりも大きいときVecは差の分だけ拡張され、追加分の位置はDefault::default()で埋められます。new_lenがlenより小さいときVecは単に切り詰められます。
このメソッドはプッシュ毎にDefaultを使用して新しい値を作成します。Cloneのほうが好ましい場合はresizeを使用してください。
Examples
#![feature(vec_resize_default)] let mut vec = vec![1, 2, 3]; vec.resize_default(5); assert_eq!(vec, [1, 2, 3, 0, 0]); let mut vec = vec![1, 2, 3, 4]; vec.resize_default(2); assert_eq!(vec, [1, 2]);Run
impl<T> Vec<T> where
T: PartialEq<T>, [src]
impl<T> Vec<T> where
T: PartialEq<T>, pub fn dedup(&mut self)[src]
pub fn dedup(&mut self)連続して繰り返される要素を取り除きます。
ベクターがソートされているときこのメソッドは全ての重複を取り除きます。
Examples
let mut vec = vec![1, 2, 2, 3, 2]; vec.dedup(); assert_eq!(vec, [1, 2, 3, 2]);Run
pub fn remove_item(&mut self, item: &T) -> Option<T>[src]
pub fn remove_item(&mut self, item: &T) -> Option<T>🔬 This is a nightly-only experimental API. (vec_remove_item #40062)
recently added
impl<T> Vec<T>[src]
impl<T> Vec<T>ⓘImportant traits for Splice<'a, I>pub fn splice<R, I>(
&mut self,
range: R,
replace_with: I
) -> Splice<<I as IntoIterator>::IntoIter> where
I: IntoIterator<Item = T>,
R: RangeBounds<usize>, 1.21.0[src]
pub fn splice<R, I>(
&mut self,
range: R,
replace_with: I
) -> Splice<<I as IntoIterator>::IntoIter> where
I: IntoIterator<Item = T>,
R: RangeBounds<usize>, ベクター内の指定された区間を与えられたreplace_withイテレータで置き換え、取り除かれた要素を与える置換イテレータを作成します。replace_withはrangeと同じ長さでなくてもかまいません。
注1: イテレータが最後まで消費されないとしても区間内の要素は取り除かれます。
Spliceの値がリークした場合、いくつの要素がベクターから取り除かれるかは未規定です。
注3: Spliceがドロップされたとき、入力イテレータreplace_withは消費だけされます。
注4: このメソッドは次の場合最適です:
- 後部 (ベクター内の
rangeの後の要素) が空のとき - または
replace_withがrangeの長さ以下の個数の要素を与えるとき - または
size_hint()の下限が正確であるとき。
Panics
始点が終点より大きい場合、または終点がベクターの長さより大きい場合パニックします。
Examples
let mut v = vec![1, 2, 3]; let new = [7, 8]; let u: Vec<_> = v.splice(..2, new.iter().cloned()).collect(); assert_eq!(v, &[7, 8, 3]); assert_eq!(u, &[1, 2]);Run
ⓘImportant traits for DrainFilter<'a, T, F>pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<T, F> where
F: FnMut(&mut T) -> bool, [src]
pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<T, F> where
F: FnMut(&mut T) -> bool, 🔬 This is a nightly-only experimental API. (drain_filter #43244)
recently added
要素を取り除くべきかの判定にクロージャを利用するイテレータを作成します。
クロージャがtrueを返すとき、要素は取り除かれ、イテレータによって与えられます。 クロージャがfalseを返すとき、要素はベクターに残り、イテレータによって与えられません。
このメソッドを使うことは次のコードと同値です:
let mut i = 0; while i != vec.len() { if some_predicate(&mut vec[i]) { let val = vec.remove(i); // ここにあなたのコード } else { i += 1; } } Run
しかしdrain_filterはより簡単に使えます。drain_filterは配列の要素をまとめて移動できるので、効率的でもあります。
drain_filterでは保持か除外かの選択に関わらず、filterクロージャの中で各要素を変化させることもできるので注意してください。
Examples
配列を偶数と奇数に分割し、元の確保されたメモリを再利用します:
#![feature(drain_filter)] let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15]; let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<Vec<_>>(); let odds = numbers; assert_eq!(evens, vec![2, 4, 6, 8, 14]); assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);Run
Methods from Deref<Target = [T]>
pub const fn len(&self) -> usize[src]
pub const fn len(&self) -> usizepub const fn is_empty(&self) -> bool[src]
pub const fn is_empty(&self) -> boolpub fn first(&self) -> Option<&T>[src]
pub fn first(&self) -> Option<&T>Returns the first element of the slice, or None if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&10), v.first()); let w: &[i32] = &[]; assert_eq!(None, w.first());Run
pub fn first_mut(&mut self) -> Option<&mut T>[src]
pub fn first_mut(&mut self) -> Option<&mut T>Returns a mutable pointer to the first element of the slice, or None if it is empty.
Examples
let x = &mut [0, 1, 2]; if let Some(first) = x.first_mut() { *first = 5; } assert_eq!(x, &[5, 1, 2]);Run
pub fn split_first(&self) -> Option<(&T, &[T])>1.5.0[src]
pub fn split_first(&self) -> Option<(&T, &[T])>Returns the first and all the rest of the elements of the slice, or None if it is empty.
Examples
let x = &[0, 1, 2]; if let Some((first, elements)) = x.split_first() { assert_eq!(first, &0); assert_eq!(elements, &[1, 2]); }Run
pub fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])>1.5.0[src]
pub fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])>Returns the first and all the rest of the elements of the slice, or None if it is empty.
Examples
let x = &mut [0, 1, 2]; if let Some((first, elements)) = x.split_first_mut() { *first = 3; elements[0] = 4; elements[1] = 5; } assert_eq!(x, &[3, 4, 5]);Run
pub fn split_last(&self) -> Option<(&T, &[T])>1.5.0[src]
pub fn split_last(&self) -> Option<(&T, &[T])>Returns the last and all the rest of the elements of the slice, or None if it is empty.
Examples
let x = &[0, 1, 2]; if let Some((last, elements)) = x.split_last() { assert_eq!(last, &2); assert_eq!(elements, &[0, 1]); }Run
pub fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])>1.5.0[src]
pub fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])>Returns the last and all the rest of the elements of the slice, or None if it is empty.
Examples
let x = &mut [0, 1, 2]; if let Some((last, elements)) = x.split_last_mut() { *last = 3; elements[0] = 4; elements[1] = 5; } assert_eq!(x, &[4, 5, 3]);Run
pub fn last(&self) -> Option<&T>[src]
pub fn last(&self) -> Option<&T>Returns the last element of the slice, or None if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&30), v.last()); let w: &[i32] = &[]; assert_eq!(None, w.last());Run
pub fn last_mut(&mut self) -> Option<&mut T>[src]
pub fn last_mut(&mut self) -> Option<&mut T>Returns a mutable pointer to the last item in the slice.
Examples
let x = &mut [0, 1, 2]; if let Some(last) = x.last_mut() { *last = 10; } assert_eq!(x, &[0, 1, 10]);Run
pub fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output> where
I: SliceIndex<[T]>, [src]
pub fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output> where
I: SliceIndex<[T]>, Returns a reference to an element or subslice depending on the type of index.
- If given a position, returns a reference to the element at that
position or
Noneif out of bounds. - If given a range, returns the subslice corresponding to that range,
or
Noneif out of bounds.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&40), v.get(1)); assert_eq!(Some(&[10, 40][..]), v.get(0..2)); assert_eq!(None, v.get(3)); assert_eq!(None, v.get(0..4));Run
pub fn get_mut<I>(
&mut self,
index: I
) -> Option<&mut <I as SliceIndex<[T]>>::Output> where
I: SliceIndex<[T]>, [src]
pub fn get_mut<I>(
&mut self,
index: I
) -> Option<&mut <I as SliceIndex<[T]>>::Output> where
I: SliceIndex<[T]>, Returns a mutable reference to an element or subslice depending on the
type of index (see get) or None if the index is out of bounds.
Examples
let x = &mut [0, 1, 2]; if let Some(elem) = x.get_mut(1) { *elem = 42; } assert_eq!(x, &[0, 42, 2]);Run
pub unsafe fn get_unchecked<I>(
&self,
index: I
) -> &<I as SliceIndex<[T]>>::Output where
I: SliceIndex<[T]>, [src]
pub unsafe fn get_unchecked<I>(
&self,
index: I
) -> &<I as SliceIndex<[T]>>::Output where
I: SliceIndex<[T]>, Returns a reference to an element or subslice, without doing bounds checking.
This is generally not recommended, use with caution! For a safe
alternative see get.
Examples
let x = &[1, 2, 4]; unsafe { assert_eq!(x.get_unchecked(1), &2); }Run
pub unsafe fn get_unchecked_mut<I>(
&mut self,
index: I
) -> &mut <I as SliceIndex<[T]>>::Output where
I: SliceIndex<[T]>, [src]
pub unsafe fn get_unchecked_mut<I>(
&mut self,
index: I
) -> &mut <I as SliceIndex<[T]>>::Output where
I: SliceIndex<[T]>, Returns a mutable reference to an element or subslice, without doing bounds checking.
This is generally not recommended, use with caution! For a safe
alternative see get_mut.
Examples
let x = &mut [1, 2, 4]; unsafe { let elem = x.get_unchecked_mut(1); *elem = 13; } assert_eq!(x, &[1, 13, 4]);Run
pub const fn as_ptr(&self) -> *const T[src]
pub const fn as_ptr(&self) -> *const TReturns a raw pointer to the slice's buffer.
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
Examples
let x = &[1, 2, 4]; let x_ptr = x.as_ptr(); unsafe { for i in 0..x.len() { assert_eq!(x.get_unchecked(i), &*x_ptr.offset(i as isize)); } }Run
pub fn as_mut_ptr(&mut self) -> *mut T[src]
pub fn as_mut_ptr(&mut self) -> *mut TReturns an unsafe mutable pointer to the slice's buffer.
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
Examples
let x = &mut [1, 2, 4]; let x_ptr = x.as_mut_ptr(); unsafe { for i in 0..x.len() { *x_ptr.offset(i as isize) += 2; } } assert_eq!(x, &[3, 4, 6]);Run
pub fn swap(&mut self, a: usize, b: usize)[src]
pub fn swap(&mut self, a: usize, b: usize)Swaps two elements in the slice.
Arguments
- a - The index of the first element
- b - The index of the second element
Panics
Panics if a or b are out of bounds.
Examples
let mut v = ["a", "b", "c", "d"]; v.swap(1, 3); assert!(v == ["a", "d", "c", "b"]);Run
pub fn reverse(&mut self)[src]
pub fn reverse(&mut self)Reverses the order of elements in the slice, in place.
Examples
let mut v = [1, 2, 3]; v.reverse(); assert!(v == [3, 2, 1]);Run
ⓘImportant traits for Iter<'a, T>pub fn iter(&self) -> Iter<T>[src]
pub fn iter(&self) -> Iter<T>Returns an iterator over the slice.
Examples
let x = &[1, 2, 4]; let mut iterator = x.iter(); assert_eq!(iterator.next(), Some(&1)); assert_eq!(iterator.next(), Some(&2)); assert_eq!(iterator.next(), Some(&4)); assert_eq!(iterator.next(), None);Run
ⓘImportant traits for IterMut<'a, T>pub fn iter_mut(&mut self) -> IterMut<T>[src]
pub fn iter_mut(&mut self) -> IterMut<T>Returns an iterator that allows modifying each value.
Examples
let x = &mut [1, 2, 4]; for elem in x.iter_mut() { *elem += 2; } assert_eq!(x, &[3, 4, 6]);Run
ⓘImportant traits for Windows<'a, T>pub fn windows(&self, size: usize) -> Windows<T>[src]
pub fn windows(&self, size: usize) -> Windows<T>Returns an iterator over all contiguous windows of length
size. The windows overlap. If the slice is shorter than
size, the iterator returns no values.
Panics
Panics if size is 0.
Examples
let slice = ['r', 'u', 's', 't']; let mut iter = slice.windows(2); assert_eq!(iter.next().unwrap(), &['r', 'u']); assert_eq!(iter.next().unwrap(), &['u', 's']); assert_eq!(iter.next().unwrap(), &['s', 't']); assert!(iter.next().is_none());Run
If the slice is shorter than size:
let slice = ['f', 'o', 'o']; let mut iter = slice.windows(4); assert!(iter.next().is_none());Run
ⓘImportant traits for Chunks<'a, T>pub fn chunks(&self, chunk_size: usize) -> Chunks<T>[src]
pub fn chunks(&self, chunk_size: usize) -> Chunks<T>Returns an iterator over chunk_size elements of the slice at a
time. The chunks are slices and do not overlap. If chunk_size does
not divide the length of the slice, then the last chunk will
not have length chunk_size.
See exact_chunks for a variant of this iterator that returns chunks
of always exactly chunk_size elements.
Panics
Panics if chunk_size is 0.
Examples
let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.chunks(2); assert_eq!(iter.next().unwrap(), &['l', 'o']); assert_eq!(iter.next().unwrap(), &['r', 'e']); assert_eq!(iter.next().unwrap(), &['m']); assert!(iter.next().is_none());Run
ⓘImportant traits for ChunksMut<'a, T>pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T>[src]
pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T>Returns an iterator over chunk_size elements of the slice at a time.
The chunks are mutable slices, and do not overlap. If chunk_size does
not divide the length of the slice, then the last chunk will not
have length chunk_size.
See exact_chunks_mut for a variant of this iterator that returns chunks
of always exactly chunk_size elements.
Panics
Panics if chunk_size is 0.
Examples
let v = &mut [0, 0, 0, 0, 0]; let mut count = 1; for chunk in v.chunks_mut(2) { for elem in chunk.iter_mut() { *elem += count; } count += 1; } assert_eq!(v, &[1, 1, 2, 2, 3]);Run
ⓘImportant traits for ExactChunks<'a, T>pub fn exact_chunks(&self, chunk_size: usize) -> ExactChunks<T>[src]
pub fn exact_chunks(&self, chunk_size: usize) -> ExactChunks<T>Returns an iterator over chunk_size elements of the slice at a
time. The chunks are slices and do not overlap. If chunk_size does
not divide the length of the slice, then the last up to chunk_size-1
elements will be omitted.
Due to each chunk having exactly chunk_size elements, the compiler
can often optimize the resulting code better than in the case of
chunks.
Panics
Panics if chunk_size is 0.
Examples
#![feature(exact_chunks)] let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.exact_chunks(2); assert_eq!(iter.next().unwrap(), &['l', 'o']); assert_eq!(iter.next().unwrap(), &['r', 'e']); assert!(iter.next().is_none());Run
ⓘImportant traits for ExactChunksMut<'a, T>pub fn exact_chunks_mut(&mut self, chunk_size: usize) -> ExactChunksMut<T>[src]
pub fn exact_chunks_mut(&mut self, chunk_size: usize) -> ExactChunksMut<T>Returns an iterator over chunk_size elements of the slice at a time.
The chunks are mutable slices, and do not overlap. If chunk_size does
not divide the length of the slice, then the last up to chunk_size-1
elements will be omitted.
Due to each chunk having exactly chunk_size elements, the compiler
can often optimize the resulting code better than in the case of
chunks_mut.
Panics
Panics if chunk_size is 0.
Examples
#![feature(exact_chunks)] let v = &mut [0, 0, 0, 0, 0]; let mut count = 1; for chunk in v.exact_chunks_mut(2) { for elem in chunk.iter_mut() { *elem += count; } count += 1; } assert_eq!(v, &[1, 1, 2, 2, 0]);Run
pub fn split_at(&self, mid: usize) -> (&[T], &[T])[src]
pub fn split_at(&self, mid: usize) -> (&[T], &[T])Divides one slice into two at an index.
The first will contain all indices from [0, mid) (excluding
the index mid itself) and the second will contain all
indices from [mid, len) (excluding the index len itself).
Panics
Panics if mid > len.
Examples
let v = [1, 2, 3, 4, 5, 6]; { let (left, right) = v.split_at(0); assert!(left == []); assert!(right == [1, 2, 3, 4, 5, 6]); } { let (left, right) = v.split_at(2); assert!(left == [1, 2]); assert!(right == [3, 4, 5, 6]); } { let (left, right) = v.split_at(6); assert!(left == [1, 2, 3, 4, 5, 6]); assert!(right == []); }Run
pub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])[src]
pub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])Divides one mutable slice into two at an index.
The first will contain all indices from [0, mid) (excluding
the index mid itself) and the second will contain all
indices from [mid, len) (excluding the index len itself).
Panics
Panics if mid > len.
Examples
let mut v = [1, 0, 3, 0, 5, 6]; // scoped to restrict the lifetime of the borrows { let (left, right) = v.split_at_mut(2); assert!(left == [1, 0]); assert!(right == [3, 0, 5, 6]); left[1] = 2; right[1] = 4; } assert!(v == [1, 2, 3, 4, 5, 6]);Run
ⓘImportant traits for Split<'a, T, P>pub fn split<F>(&self, pred: F) -> Split<T, F> where
F: FnMut(&T) -> bool, [src]
pub fn split<F>(&self, pred: F) -> Split<T, F> where
F: FnMut(&T) -> bool, Returns an iterator over subslices separated by elements that match
pred. The matched element is not contained in the subslices.
Examples
let slice = [10, 40, 33, 20]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());Run
If the first element is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last element in the slice is matched, an empty slice will be the last item returned by the iterator:
let slice = [10, 40, 33]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40]); assert_eq!(iter.next().unwrap(), &[]); assert!(iter.next().is_none());Run
If two matched elements are directly adjacent, an empty slice will be present between them:
let slice = [10, 6, 33, 20]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10]); assert_eq!(iter.next().unwrap(), &[]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());Run
ⓘImportant traits for SplitMut<'a, T, P>pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F> where
F: FnMut(&T) -> bool, [src]
pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F> where
F: FnMut(&T) -> bool, Returns an iterator over mutable subslices separated by elements that
match pred. The matched element is not contained in the subslices.
Examples
let mut v = [10, 40, 30, 20, 60, 50]; for group in v.split_mut(|num| *num % 3 == 0) { group[0] = 1; } assert_eq!(v, [1, 40, 30, 1, 60, 1]);Run
ⓘImportant traits for RSplit<'a, T, P>pub fn rsplit<F>(&self, pred: F) -> RSplit<T, F> where
F: FnMut(&T) -> bool, 1.27.0[src]
pub fn rsplit<F>(&self, pred: F) -> RSplit<T, F> where
F: FnMut(&T) -> bool, Returns an iterator over subslices separated by elements that match
pred, starting at the end of the slice and working backwards.
The matched element is not contained in the subslices.
Examples
let slice = [11, 22, 33, 0, 44, 55]; let mut iter = slice.rsplit(|num| *num == 0); assert_eq!(iter.next().unwrap(), &[44, 55]); assert_eq!(iter.next().unwrap(), &[11, 22, 33]); assert_eq!(iter.next(), None);Run
As with split(), if the first or last element is matched, an empty
slice will be the first (or last) item returned by the iterator.
let v = &[0, 1, 1, 2, 3, 5, 8]; let mut it = v.rsplit(|n| *n % 2 == 0); assert_eq!(it.next().unwrap(), &[]); assert_eq!(it.next().unwrap(), &[3, 5]); assert_eq!(it.next().unwrap(), &[1, 1]); assert_eq!(it.next().unwrap(), &[]); assert_eq!(it.next(), None);Run
ⓘImportant traits for RSplitMut<'a, T, P>pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<T, F> where
F: FnMut(&T) -> bool, 1.27.0[src]
pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<T, F> where
F: FnMut(&T) -> bool, Returns an iterator over mutable subslices separated by elements that
match pred, starting at the end of the slice and working
backwards. The matched element is not contained in the subslices.
Examples
let mut v = [100, 400, 300, 200, 600, 500]; let mut count = 0; for group in v.rsplit_mut(|num| *num % 3 == 0) { count += 1; group[0] = count; } assert_eq!(v, [3, 400, 300, 2, 600, 1]);Run
ⓘImportant traits for SplitN<'a, T, P>pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where
F: FnMut(&T) -> bool, [src]
pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where
F: FnMut(&T) -> bool, Returns an iterator over subslices separated by elements that match
pred, limited to returning at most n items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once by numbers divisible by 3 (i.e. [10, 40],
[20, 60, 50]):
let v = [10, 40, 30, 20, 60, 50]; for group in v.splitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }Run
ⓘImportant traits for SplitNMut<'a, T, P>pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F> where
F: FnMut(&T) -> bool, [src]
pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F> where
F: FnMut(&T) -> bool, Returns an iterator over subslices separated by elements that match
pred, limited to returning at most n items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
let mut v = [10, 40, 30, 20, 60, 50]; for group in v.splitn_mut(2, |num| *num % 3 == 0) { group[0] = 1; } assert_eq!(v, [1, 40, 30, 1, 60, 50]);Run
ⓘImportant traits for RSplitN<'a, T, P>pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where
F: FnMut(&T) -> bool, [src]
pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where
F: FnMut(&T) -> bool, Returns an iterator over subslices separated by elements that match
pred limited to returning at most n items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once, starting from the end, by numbers divisible
by 3 (i.e. [50], [10, 40, 30, 20]):
let v = [10, 40, 30, 20, 60, 50]; for group in v.rsplitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }Run
ⓘImportant traits for RSplitNMut<'a, T, P>pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F> where
F: FnMut(&T) -> bool, [src]
pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F> where
F: FnMut(&T) -> bool, Returns an iterator over subslices separated by elements that match
pred limited to returning at most n items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
let mut s = [10, 40, 30, 20, 60, 50]; for group in s.rsplitn_mut(2, |num| *num % 3 == 0) { group[0] = 1; } assert_eq!(s, [1, 40, 30, 20, 60, 1]);Run
pub fn contains(&self, x: &T) -> bool where
T: PartialEq<T>, [src]
pub fn contains(&self, x: &T) -> bool where
T: PartialEq<T>, Returns true if the slice contains an element with the given value.
Examples
let v = [10, 40, 30]; assert!(v.contains(&30)); assert!(!v.contains(&50));Run
pub fn starts_with(&self, needle: &[T]) -> bool where
T: PartialEq<T>, [src]
pub fn starts_with(&self, needle: &[T]) -> bool where
T: PartialEq<T>, Returns true if needle is a prefix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.starts_with(&[10])); assert!(v.starts_with(&[10, 40])); assert!(!v.starts_with(&[50])); assert!(!v.starts_with(&[10, 50]));Run
Always returns true if needle is an empty slice:
let v = &[10, 40, 30]; assert!(v.starts_with(&[])); let v: &[u8] = &[]; assert!(v.starts_with(&[]));Run
pub fn ends_with(&self, needle: &[T]) -> bool where
T: PartialEq<T>, [src]
pub fn ends_with(&self, needle: &[T]) -> bool where
T: PartialEq<T>, Returns true if needle is a suffix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.ends_with(&[30])); assert!(v.ends_with(&[40, 30])); assert!(!v.ends_with(&[50])); assert!(!v.ends_with(&[50, 30]));Run
Always returns true if needle is an empty slice:
let v = &[10, 40, 30]; assert!(v.ends_with(&[])); let v: &[u8] = &[]; assert!(v.ends_with(&[]));Run
pub fn binary_search(&self, x: &T) -> Result<usize, usize> where
T: Ord, [src]
pub fn binary_search(&self, x: &T) -> Result<usize, usize> where
T: Ord, Binary searches this sorted slice for a given element.
If the value is found then Ok is returned, containing the
index of the matching element; if the value is not found then
Err is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
Examples
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4].
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; assert_eq!(s.binary_search(&13), Ok(9)); assert_eq!(s.binary_search(&4), Err(7)); assert_eq!(s.binary_search(&100), Err(13)); let r = s.binary_search(&1); assert!(match r { Ok(1...4) => true, _ => false, });Run
pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> where
F: FnMut(&'a T) -> Ordering, [src]
pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> where
F: FnMut(&'a T) -> Ordering, Binary searches this sorted slice with a comparator function.
The comparator function should implement an order consistent
with the sort order of the underlying slice, returning an
order code that indicates whether its argument is Less,
Equal or Greater the desired target.
If a matching value is found then returns Ok, containing
the index for the matched element; if no match is found then
Err is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
Examples
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4].
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; let seek = 13; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); let seek = 4; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); let seek = 100; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); let seek = 1; let r = s.binary_search_by(|probe| probe.cmp(&seek)); assert!(match r { Ok(1...4) => true, _ => false, });Run
pub fn binary_search_by_key<'a, B, F>(
&'a self,
b: &B,
f: F
) -> Result<usize, usize> where
B: Ord,
F: FnMut(&'a T) -> B, 1.10.0[src]
pub fn binary_search_by_key<'a, B, F>(
&'a self,
b: &B,
f: F
) -> Result<usize, usize> where
B: Ord,
F: FnMut(&'a T) -> B, Binary searches this sorted slice with a key extraction function.
Assumes that the slice is sorted by the key, for instance with
sort_by_key using the same key extraction function.
If a matching value is found then returns Ok, containing the
index for the matched element; if no match is found then Err
is returned, containing the index where a matching element could
be inserted while maintaining sorted order.
Examples
Looks up a series of four elements in a slice of pairs sorted by
their second elements. The first is found, with a uniquely
determined position; the second and third are not found; the
fourth could match any position in [1, 4].
let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1), (1, 2), (2, 3), (4, 5), (5, 8), (3, 13), (1, 21), (2, 34), (4, 55)]; assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b), Ok(9)); assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b), Err(7)); assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13)); let r = s.binary_search_by_key(&1, |&(a,b)| b); assert!(match r { Ok(1...4) => true, _ => false, });Run
pub fn sort_unstable(&mut self) where
T: Ord, 1.20.0[src]
pub fn sort_unstable(&mut self) where
T: Ord, Sorts the slice, but may not preserve the order of equal elements.
This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate),
and O(n log n) worst-case.
Current implementation
The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.
It is typically faster than stable sorting, except in a few special cases, e.g. when the slice consists of several concatenated sorted sequences.
Examples
let mut v = [-5, 4, 1, -3, 2]; v.sort_unstable(); assert!(v == [-5, -3, 1, 2, 4]);Run
pub fn sort_unstable_by<F>(&mut self, compare: F) where
F: FnMut(&T, &T) -> Ordering, 1.20.0[src]
pub fn sort_unstable_by<F>(&mut self, compare: F) where
F: FnMut(&T, &T) -> Ordering, Sorts the slice with a comparator function, but may not preserve the order of equal elements.
This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate),
and O(n log n) worst-case.
Current implementation
The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.
It is typically faster than stable sorting, except in a few special cases, e.g. when the slice consists of several concatenated sorted sequences.
Examples
let mut v = [5, 4, 1, 3, 2]; v.sort_unstable_by(|a, b| a.cmp(b)); assert!(v == [1, 2, 3, 4, 5]); // reverse sorting v.sort_unstable_by(|a, b| b.cmp(a)); assert!(v == [5, 4, 3, 2, 1]);Run
pub fn sort_unstable_by_key<K, F>(&mut self, f: F) where
F: FnMut(&T) -> K,
K: Ord, 1.20.0[src]
pub fn sort_unstable_by_key<K, F>(&mut self, f: F) where
F: FnMut(&T) -> K,
K: Ord, Sorts the slice with a key extraction function, but may not preserve the order of equal elements.
This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate),
and O(m n log(m n)) worst-case, where the key function is O(m).
Current implementation
The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.
Examples
let mut v = [-5i32, 4, 1, -3, 2]; v.sort_unstable_by_key(|k| k.abs()); assert!(v == [1, 2, -3, 4, -5]);Run
pub fn rotate_left(&mut self, mid: usize)1.26.0[src]
pub fn rotate_left(&mut self, mid: usize)Rotates the slice in-place such that the first mid elements of the
slice move to the end while the last self.len() - mid elements move to
the front. After calling rotate_left, the element previously at index
mid will become the first element in the slice.
Panics
This function will panic if mid is greater than the length of the
slice. Note that mid == self.len() does not panic and is a no-op
rotation.
Complexity
Takes linear (in self.len()) time.
Examples
let mut a = ['a', 'b', 'c', 'd', 'e', 'f']; a.rotate_left(2); assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);Run
Rotating a subslice:
let mut a = ['a', 'b', 'c', 'd', 'e', 'f']; a[1..5].rotate_left(1); assert_eq!(a, ['a', 'c', 'd', 'e', 'b', 'f']);Run
pub fn rotate_right(&mut self, k: usize)1.26.0[src]
pub fn rotate_right(&mut self, k: usize)Rotates the slice in-place such that the first self.len() - k
elements of the slice move to the end while the last k elements move
to the front. After calling rotate_right, the element previously at
index self.len() - k will become the first element in the slice.
Panics
This function will panic if k is greater than the length of the
slice. Note that k == self.len() does not panic and is a no-op
rotation.
Complexity
Takes linear (in self.len()) time.
Examples
let mut a = ['a', 'b', 'c', 'd', 'e', 'f']; a.rotate_right(2); assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);Run
Rotate a subslice:
let mut a = ['a', 'b', 'c', 'd', 'e', 'f']; a[1..5].rotate_right(1); assert_eq!(a, ['a', 'e', 'b', 'c', 'd', 'f']);Run
pub fn clone_from_slice(&mut self, src: &[T]) where
T: Clone, 1.7.0[src]
pub fn clone_from_slice(&mut self, src: &[T]) where
T: Clone, Copies the elements from src into self.
The length of src must be the same as self.
If src implements Copy, it can be more performant to use
copy_from_slice.
Panics
This function will panic if the two slices have different lengths.
Examples
Cloning two elements from a slice into another:
let src = [1, 2, 3, 4]; let mut dst = [0, 0]; dst.clone_from_slice(&src[2..]); assert_eq!(src, [1, 2, 3, 4]); assert_eq!(dst, [3, 4]);Run
Rust enforces that there can only be one mutable reference with no
immutable references to a particular piece of data in a particular
scope. Because of this, attempting to use clone_from_slice on a
single slice will result in a compile failure:
let mut slice = [1, 2, 3, 4, 5]; slice[..2].clone_from_slice(&slice[3..]); // compile fail!Run
To work around this, we can use split_at_mut to create two distinct
sub-slices from a slice:
let mut slice = [1, 2, 3, 4, 5]; { let (left, right) = slice.split_at_mut(2); left.clone_from_slice(&right[1..]); } assert_eq!(slice, [4, 5, 3, 4, 5]);Run
pub fn copy_from_slice(&mut self, src: &[T]) where
T: Copy, 1.9.0[src]
pub fn copy_from_slice(&mut self, src: &[T]) where
T: Copy, Copies all elements from src into self, using a memcpy.
The length of src must be the same as self.
If src does not implement Copy, use clone_from_slice.
Panics
This function will panic if the two slices have different lengths.
Examples
Copying two elements from a slice into another:
let src = [1, 2, 3, 4]; let mut dst = [0, 0]; dst.copy_from_slice(&src[2..]); assert_eq!(src, [1, 2, 3, 4]); assert_eq!(dst, [3, 4]);Run
Rust enforces that there can only be one mutable reference with no
immutable references to a particular piece of data in a particular
scope. Because of this, attempting to use copy_from_slice on a
single slice will result in a compile failure:
let mut slice = [1, 2, 3, 4, 5]; slice[..2].copy_from_slice(&slice[3..]); // compile fail!Run
To work around this, we can use split_at_mut to create two distinct
sub-slices from a slice:
let mut slice = [1, 2, 3, 4, 5]; { let (left, right) = slice.split_at_mut(2); left.copy_from_slice(&right[1..]); } assert_eq!(slice, [4, 5, 3, 4, 5]);Run
pub fn swap_with_slice(&mut self, other: &mut [T])1.27.0[src]
pub fn swap_with_slice(&mut self, other: &mut [T])Swaps all elements in self with those in other.
The length of other must be the same as self.
Panics
This function will panic if the two slices have different lengths.
Example
Swapping two elements across slices:
let mut slice1 = [0, 0]; let mut slice2 = [1, 2, 3, 4]; slice1.swap_with_slice(&mut slice2[2..]); assert_eq!(slice1, [3, 4]); assert_eq!(slice2, [1, 2, 0, 0]);Run
Rust enforces that there can only be one mutable reference to a
particular piece of data in a particular scope. Because of this,
attempting to use swap_with_slice on a single slice will result in
a compile failure:
let mut slice = [1, 2, 3, 4, 5]; slice[..2].swap_with_slice(&mut slice[3..]); // compile fail!Run
To work around this, we can use split_at_mut to create two distinct
mutable sub-slices from a slice:
let mut slice = [1, 2, 3, 4, 5]; { let (left, right) = slice.split_at_mut(2); left.swap_with_slice(&mut right[1..]); } assert_eq!(slice, [4, 5, 3, 1, 2]);Run
pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T])[src]
pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T])Transmute the slice to a slice of another type, ensuring aligment of the types is maintained.
This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new type, and the suffix slice. The middle slice will have the greatest length possible for a given type and input slice.
This method has no purpose when either input element T or output element U are
zero-sized and will return the original slice without splitting anything.
Unsafety
This method is essentially a transmute with respect to the elements in the returned
middle slice, so all the usual caveats pertaining to transmute::<T, U> also apply here.
Examples
Basic usage:
unsafe { let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7]; let (prefix, shorts, suffix) = bytes.align_to::<u16>(); // less_efficient_algorithm_for_bytes(prefix); // more_efficient_algorithm_for_aligned_shorts(shorts); // less_efficient_algorithm_for_bytes(suffix); }Run
pub unsafe fn align_to_mut<U>(&mut self) -> (&mut [T], &mut [U], &mut [T])[src]
pub unsafe fn align_to_mut<U>(&mut self) -> (&mut [T], &mut [U], &mut [T])Transmute the slice to a slice of another type, ensuring aligment of the types is maintained.
This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new type, and the suffix slice. The middle slice will have the greatest length possible for a given type and input slice.
This method has no purpose when either input element T or output element U are
zero-sized and will return the original slice without splitting anything.
Unsafety
This method is essentially a transmute with respect to the elements in the returned
middle slice, so all the usual caveats pertaining to transmute::<T, U> also apply here.
Examples
Basic usage:
unsafe { let mut bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7]; let (prefix, shorts, suffix) = bytes.align_to_mut::<u16>(); // less_efficient_algorithm_for_bytes(prefix); // more_efficient_algorithm_for_aligned_shorts(shorts); // less_efficient_algorithm_for_bytes(suffix); }Run
pub fn is_ascii(&self) -> bool1.23.0[src]
pub fn is_ascii(&self) -> boolChecks if all bytes in this slice are within the ASCII range.
pub fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool1.23.0[src]
pub fn eq_ignore_ascii_case(&self, other: &[u8]) -> boolChecks that two slices are an ASCII case-insensitive match.
Same as to_ascii_lowercase(a) == to_ascii_lowercase(b),
but without allocating and copying temporaries.
pub fn make_ascii_uppercase(&mut self)1.23.0[src]
pub fn make_ascii_uppercase(&mut self)Converts this slice to its ASCII upper case equivalent in-place.
ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', but non-ASCII letters are unchanged.
To return a new uppercased value without modifying the existing one, use
to_ascii_uppercase.
pub fn make_ascii_lowercase(&mut self)1.23.0[src]
pub fn make_ascii_lowercase(&mut self)Converts this slice to its ASCII lower case equivalent in-place.
ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', but non-ASCII letters are unchanged.
To return a new lowercased value without modifying the existing one, use
to_ascii_lowercase.
pub fn sort(&mut self) where
T: Ord, [src]
pub fn sort(&mut self) where
T: Ord, スライスをソートします。
このソートは安定で (すなわち等しい要素を並べ替えない)、最悪の場合でもO(n log n)です。
可能ならば不安定なソートが望ましいです。一般に安定なソートより高速で、補助的なメモリを確保しません。sort_unstableを参照してください。
現在の実装
現在のアルゴリズムはtimsortに影響を受けた適応型で逐次のマージソートです。これはスライスがほとんどソートされている、または二つ以上のソートされた列を次々に結合したものである場合、非常に速くなるように設計されています。
また、このアルゴリズムはselfの半分の大きさの一時領域を確保しますが、短いスライスに対してはメモリを確保しない挿入ソートを代わりに使用します。
Examples
let mut v = [-5, 4, 1, -3, 2]; v.sort(); assert!(v == [-5, -3, 1, 2, 4]);Run
pub fn sort_by<F>(&mut self, compare: F) where
F: FnMut(&T, &T) -> Ordering, [src]
pub fn sort_by<F>(&mut self, compare: F) where
F: FnMut(&T, &T) -> Ordering, 比較関数を利用してスライスをソートします。
このソートは安定で (すなわち等しい要素を並べ替えない)、最悪の場合でもO(n log n)です。
可能ならば不安定なソートが望ましいです。一般に安定なソートより高速で、補助的なメモリを確保しません。sort_unstable_byを参照してください。
現在の実装
現在のアルゴリズムはtimsortに影響を受けた適応型で逐次のマージソートです。これはスライスがほとんどソートされている、または二つ以上のソートされた列を次々に結合したものである場合、非常に速くなるように設計されています。
また、このアルゴリズムはselfの半分の大きさの一時領域を確保しますが、短いスライスに対してはメモリを確保しない挿入ソートを代わりに使用します。
Examples
let mut v = [5, 4, 1, 3, 2]; v.sort_by(|a, b| a.cmp(b)); assert!(v == [1, 2, 3, 4, 5]); // 逆順ソート v.sort_by(|a, b| b.cmp(a)); assert!(v == [5, 4, 3, 2, 1]);Run
pub fn sort_by_key<K, F>(&mut self, f: F) where
F: FnMut(&T) -> K,
K: Ord, 1.7.0[src]
pub fn sort_by_key<K, F>(&mut self, f: F) where
F: FnMut(&T) -> K,
K: Ord, キーを取り出す関数を利用してスライスをソートします。
このソートは安定で (すなわち等しい要素を並べ替えない)、最悪の場合でもO(m n log (m n))です。ここでキー関数はO(m)としています。
可能ならば不安定なソートが望ましいです。一般に安定なソートより高速で、補助的なメモリを確保しません。sort_unstable_by_keyを参照してください。
現在の実装
現在のアルゴリズムはtimsortに影響を受けた適応型で逐次のマージソートです。これはスライスがほとんどソートされている、または二つ以上のソートされた列を次々に結合したものである場合、非常に速くなるように設計されています。
また、このアルゴリズムはselfの半分の大きさの一時領域を確保しますが、短いスライスに対してはメモリを確保しない挿入ソートを代わりに使用します。
Examples
let mut v = [-5i32, 4, 1, -3, 2]; v.sort_by_key(|k| k.abs()); assert!(v == [1, 2, -3, 4, -5]);Run
pub fn sort_by_cached_key<K, F>(&mut self, f: F) where
F: FnMut(&T) -> K,
K: Ord, [src]
pub fn sort_by_cached_key<K, F>(&mut self, f: F) where
F: FnMut(&T) -> K,
K: Ord, キーを取り出す関数を利用してスライスをソートします。
ソートの際、キー関数は要素毎に一度だけ呼ばれます。
このソートは安定で (すなわち等しい要素を並べ替えない)、最悪の場合でもO(m n log (m n))です。ここでキー関数はO(m)としています。
単純なキー関数については (例えばプロパティアクセスや基本的な操作)、sort_by_keyのほうが恐らく高速です。
現在の実装
現在のアルゴリズムはOrson Petersによるpattern-defeating quicksortに基づいています。 pattern-defeating quicksortは乱択クイックソートの平均的な速さとヒープソートの最悪の場合の速さを併せ持ち、特定のパターンでは線形時間で完了します。 性能が悪くなる場合を避けるために乱数を使用しますが、常に決定的な振る舞いをさせるために固定されたシードを使用します。
最悪の場合、このアルゴリズムはスライスと同じ長さのVec<(K, usize)>に一時領域を確保します。
Examples
#![feature(slice_sort_by_cached_key)] let mut v = [-5i32, 4, 32, -3, 2]; v.sort_by_cached_key(|k| k.to_string()); assert!(v == [-3, -5, 2, 32, 4]);Run
pub fn to_vec(&self) -> Vec<T> where
T: Clone, [src]
pub fn to_vec(&self) -> Vec<T> where
T: Clone, selfをコピーして新しいVecを作成します。
Examples
let s = [10, 40, 30]; let x = s.to_vec(); // ここで、`s`と`x`は独立して変更することができます。Run
pub fn repeat(&self, n: usize) -> Vec<T> where
T: Copy, [src]
pub fn repeat(&self, n: usize) -> Vec<T> where
T: Copy, 🔬 This is a nightly-only experimental API. (repeat_generic_slice #48784)
it's on str, why not on slice?
pub fn to_ascii_uppercase(&self) -> Vec<u8>1.23.0[src]
pub fn to_ascii_uppercase(&self) -> Vec<u8>各バイトをASCIIの対応する大文字に変換したこのスライスのコピーを含むベクターを返します。
ASCII文字の'a'から'z'は'A'から'Z'に変換されますが、非ASCII文字は変更されません。
インプレースで大文字にするには、make_ascii_uppercaseを使用してください。
pub fn to_ascii_lowercase(&self) -> Vec<u8>1.23.0[src]
pub fn to_ascii_lowercase(&self) -> Vec<u8>各バイトをASCIIの対応する小文字に変換したこのスライスのコピーを含むベクターを返します。
ASCII文字の'a'から'z'は'A'から'Z'に変換されますが、非ASCII文字は変更されません。
インプレースで小文字にするには、make_ascii_lowercaseを使用してください。
Trait Implementations
impl<T> DerefMut for Vec<T>[src]
impl<T> DerefMut for Vec<T>impl<'a, 'b, A, B> PartialEq<Vec<B>> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<Vec<B>> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &Vec<B>) -> bool[src]
fn eq(&self, other: &Vec<B>) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Vec<B>) -> bool[src]
fn ne(&self, other: &Vec<B>) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 1]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 1]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 1]) -> bool[src]
fn eq(&self, other: &&'b [B; 1]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 1]) -> bool[src]
fn ne(&self, other: &&'b [B; 1]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 24]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 24]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 24]) -> bool[src]
fn eq(&self, other: &[B; 24]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 24]) -> bool[src]
fn ne(&self, other: &[B; 24]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 31]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 31]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 31]) -> bool[src]
fn eq(&self, other: &[B; 31]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 31]) -> bool[src]
fn ne(&self, other: &[B; 31]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 12]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 12]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 12]) -> bool[src]
fn eq(&self, other: &&'b [B; 12]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 12]) -> bool[src]
fn ne(&self, other: &&'b [B; 12]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 7]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 7]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 7]) -> bool[src]
fn eq(&self, other: &[B; 7]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 7]) -> bool[src]
fn ne(&self, other: &[B; 7]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 3]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 3]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 3]) -> bool[src]
fn eq(&self, other: &&'b [B; 3]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 3]) -> bool[src]
fn ne(&self, other: &&'b [B; 3]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 19]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 19]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 19]) -> bool[src]
fn eq(&self, other: &[B; 19]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 19]) -> bool[src]
fn ne(&self, other: &[B; 19]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 32]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 32]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 32]) -> bool[src]
fn eq(&self, other: &[B; 32]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 32]) -> bool[src]
fn ne(&self, other: &[B; 32]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 2]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 2]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 2]) -> bool[src]
fn eq(&self, other: &[B; 2]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 2]) -> bool[src]
fn ne(&self, other: &[B; 2]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 26]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 26]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 26]) -> bool[src]
fn eq(&self, other: &[B; 26]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 26]) -> bool[src]
fn ne(&self, other: &[B; 26]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 0]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 0]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 0]) -> bool[src]
fn eq(&self, other: &&'b [B; 0]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 0]) -> bool[src]
fn ne(&self, other: &&'b [B; 0]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b mut [B]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b mut [B]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b mut [B]) -> bool[src]
fn eq(&self, other: &&'b mut [B]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b mut [B]) -> bool[src]
fn ne(&self, other: &&'b mut [B]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 3]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 3]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 3]) -> bool[src]
fn eq(&self, other: &[B; 3]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 3]) -> bool[src]
fn ne(&self, other: &[B; 3]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 6]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 6]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 6]) -> bool[src]
fn eq(&self, other: &&'b [B; 6]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 6]) -> bool[src]
fn ne(&self, other: &&'b [B; 6]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 4]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 4]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 4]) -> bool[src]
fn eq(&self, other: &[B; 4]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 4]) -> bool[src]
fn ne(&self, other: &[B; 4]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 7]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 7]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 7]) -> bool[src]
fn eq(&self, other: &&'b [B; 7]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 7]) -> bool[src]
fn ne(&self, other: &&'b [B; 7]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 12]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 12]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 12]) -> bool[src]
fn eq(&self, other: &[B; 12]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 12]) -> bool[src]
fn ne(&self, other: &[B; 12]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 21]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 21]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 21]) -> bool[src]
fn eq(&self, other: &[B; 21]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 21]) -> bool[src]
fn ne(&self, other: &[B; 21]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 21]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 21]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 21]) -> bool[src]
fn eq(&self, other: &&'b [B; 21]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 21]) -> bool[src]
fn ne(&self, other: &&'b [B; 21]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 4]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 4]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 4]) -> bool[src]
fn eq(&self, other: &&'b [B; 4]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 4]) -> bool[src]
fn ne(&self, other: &&'b [B; 4]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 11]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 11]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 11]) -> bool[src]
fn eq(&self, other: &[B; 11]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 11]) -> bool[src]
fn ne(&self, other: &[B; 11]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 8]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 8]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 8]) -> bool[src]
fn eq(&self, other: &&'b [B; 8]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 8]) -> bool[src]
fn ne(&self, other: &&'b [B; 8]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 14]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 14]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 14]) -> bool[src]
fn eq(&self, other: &&'b [B; 14]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 14]) -> bool[src]
fn ne(&self, other: &&'b [B; 14]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 22]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 22]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 22]) -> bool[src]
fn eq(&self, other: &[B; 22]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 22]) -> bool[src]
fn ne(&self, other: &[B; 22]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 17]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 17]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 17]) -> bool[src]
fn eq(&self, other: &[B; 17]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 17]) -> bool[src]
fn ne(&self, other: &[B; 17]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 8]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 8]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 8]) -> bool[src]
fn eq(&self, other: &[B; 8]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 8]) -> bool[src]
fn ne(&self, other: &[B; 8]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 9]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 9]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 9]) -> bool[src]
fn eq(&self, other: &[B; 9]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 9]) -> bool[src]
fn ne(&self, other: &[B; 9]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 15]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 15]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 15]) -> bool[src]
fn eq(&self, other: &&'b [B; 15]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 15]) -> bool[src]
fn ne(&self, other: &&'b [B; 15]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 13]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 13]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 13]) -> bool[src]
fn eq(&self, other: &[B; 13]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 13]) -> bool[src]
fn ne(&self, other: &[B; 13]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 28]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 28]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 28]) -> bool[src]
fn eq(&self, other: &&'b [B; 28]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 28]) -> bool[src]
fn ne(&self, other: &&'b [B; 28]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 2]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 2]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 2]) -> bool[src]
fn eq(&self, other: &&'b [B; 2]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 2]) -> bool[src]
fn ne(&self, other: &&'b [B; 2]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 25]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 25]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 25]) -> bool[src]
fn eq(&self, other: &[B; 25]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 25]) -> bool[src]
fn ne(&self, other: &[B; 25]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 13]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 13]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 13]) -> bool[src]
fn eq(&self, other: &&'b [B; 13]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 13]) -> bool[src]
fn ne(&self, other: &&'b [B; 13]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 6]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 6]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 6]) -> bool[src]
fn eq(&self, other: &[B; 6]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 6]) -> bool[src]
fn ne(&self, other: &[B; 6]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 20]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 20]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 20]) -> bool[src]
fn eq(&self, other: &&'b [B; 20]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 20]) -> bool[src]
fn ne(&self, other: &&'b [B; 20]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 18]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 18]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 18]) -> bool[src]
fn eq(&self, other: &[B; 18]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 18]) -> bool[src]
fn ne(&self, other: &[B; 18]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 31]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 31]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 31]) -> bool[src]
fn eq(&self, other: &&'b [B; 31]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 31]) -> bool[src]
fn ne(&self, other: &&'b [B; 31]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 30]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 30]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 30]) -> bool[src]
fn eq(&self, other: &[B; 30]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 30]) -> bool[src]
fn ne(&self, other: &[B; 30]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 29]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 29]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 29]) -> bool[src]
fn eq(&self, other: &[B; 29]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 29]) -> bool[src]
fn ne(&self, other: &[B; 29]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 10]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 10]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 10]) -> bool[src]
fn eq(&self, other: &&'b [B; 10]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 10]) -> bool[src]
fn ne(&self, other: &&'b [B; 10]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 28]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 28]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 28]) -> bool[src]
fn eq(&self, other: &[B; 28]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 28]) -> bool[src]
fn ne(&self, other: &[B; 28]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<Vec<B>> for Cow<'a, [A]> where
A: Clone + PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<Vec<B>> for Cow<'a, [A]> where
A: Clone + PartialEq<B>, fn eq(&self, other: &Vec<B>) -> bool[src]
fn eq(&self, other: &Vec<B>) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Vec<B>) -> bool[src]
fn ne(&self, other: &Vec<B>) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 22]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 22]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 22]) -> bool[src]
fn eq(&self, other: &&'b [B; 22]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 22]) -> bool[src]
fn ne(&self, other: &&'b [B; 22]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 1]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 1]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 1]) -> bool[src]
fn eq(&self, other: &[B; 1]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 1]) -> bool[src]
fn ne(&self, other: &[B; 1]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 27]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 27]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 27]) -> bool[src]
fn eq(&self, other: &[B; 27]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 27]) -> bool[src]
fn ne(&self, other: &[B; 27]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 0]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 0]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 0]) -> bool[src]
fn eq(&self, other: &[B; 0]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 0]) -> bool[src]
fn ne(&self, other: &[B; 0]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 5]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 5]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 5]) -> bool[src]
fn eq(&self, other: &&'b [B; 5]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 5]) -> bool[src]
fn ne(&self, other: &&'b [B; 5]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 23]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 23]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 23]) -> bool[src]
fn eq(&self, other: &&'b [B; 23]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 23]) -> bool[src]
fn ne(&self, other: &&'b [B; 23]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 24]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 24]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 24]) -> bool[src]
fn eq(&self, other: &&'b [B; 24]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 24]) -> bool[src]
fn ne(&self, other: &&'b [B; 24]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 14]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 14]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 14]) -> bool[src]
fn eq(&self, other: &[B; 14]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 14]) -> bool[src]
fn ne(&self, other: &[B; 14]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 30]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 30]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 30]) -> bool[src]
fn eq(&self, other: &&'b [B; 30]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 30]) -> bool[src]
fn ne(&self, other: &&'b [B; 30]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 19]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 19]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 19]) -> bool[src]
fn eq(&self, other: &&'b [B; 19]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 19]) -> bool[src]
fn ne(&self, other: &&'b [B; 19]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 29]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 29]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 29]) -> bool[src]
fn eq(&self, other: &&'b [B; 29]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 29]) -> bool[src]
fn ne(&self, other: &&'b [B; 29]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 17]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 17]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 17]) -> bool[src]
fn eq(&self, other: &&'b [B; 17]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 17]) -> bool[src]
fn ne(&self, other: &&'b [B; 17]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 26]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 26]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 26]) -> bool[src]
fn eq(&self, other: &&'b [B; 26]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 26]) -> bool[src]
fn ne(&self, other: &&'b [B; 26]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B]) -> bool[src]
fn eq(&self, other: &&'b [B]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B]) -> bool[src]
fn ne(&self, other: &&'b [B]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 16]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 16]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 16]) -> bool[src]
fn eq(&self, other: &[B; 16]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 16]) -> bool[src]
fn ne(&self, other: &[B; 16]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 9]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 9]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 9]) -> bool[src]
fn eq(&self, other: &&'b [B; 9]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 9]) -> bool[src]
fn ne(&self, other: &&'b [B; 9]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 11]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 11]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 11]) -> bool[src]
fn eq(&self, other: &&'b [B; 11]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 11]) -> bool[src]
fn ne(&self, other: &&'b [B; 11]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<Vec<B>> for VecDeque<A> where
A: PartialEq<B>, 1.17.0[src]
impl<'a, 'b, A, B> PartialEq<Vec<B>> for VecDeque<A> where
A: PartialEq<B>, fn eq(&self, other: &Vec<B>) -> bool[src]
fn eq(&self, other: &Vec<B>) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
#[must_use]
fn ne(&self, other: &Rhs) -> bool[src]
#[must_use]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 16]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 16]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 16]) -> bool[src]
fn eq(&self, other: &&'b [B; 16]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 16]) -> bool[src]
fn ne(&self, other: &&'b [B; 16]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 25]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 25]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 25]) -> bool[src]
fn eq(&self, other: &&'b [B; 25]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 25]) -> bool[src]
fn ne(&self, other: &&'b [B; 25]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 27]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 27]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 27]) -> bool[src]
fn eq(&self, other: &&'b [B; 27]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 27]) -> bool[src]
fn ne(&self, other: &&'b [B; 27]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 5]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 5]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 5]) -> bool[src]
fn eq(&self, other: &[B; 5]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 5]) -> bool[src]
fn ne(&self, other: &[B; 5]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 20]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 20]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 20]) -> bool[src]
fn eq(&self, other: &[B; 20]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 20]) -> bool[src]
fn ne(&self, other: &[B; 20]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 23]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 23]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 23]) -> bool[src]
fn eq(&self, other: &[B; 23]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 23]) -> bool[src]
fn ne(&self, other: &[B; 23]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 18]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 18]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 18]) -> bool[src]
fn eq(&self, other: &&'b [B; 18]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 18]) -> bool[src]
fn ne(&self, other: &&'b [B; 18]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 15]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 15]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 15]) -> bool[src]
fn eq(&self, other: &[B; 15]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 15]) -> bool[src]
fn ne(&self, other: &[B; 15]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<[B; 10]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<[B; 10]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 10]) -> bool[src]
fn eq(&self, other: &[B; 10]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 10]) -> bool[src]
fn ne(&self, other: &[B; 10]) -> boolThis method tests for !=.
impl<'a, 'b, A, B> PartialEq<&'b [B; 32]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A, B> PartialEq<&'b [B; 32]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 32]) -> bool[src]
fn eq(&self, other: &&'b [B; 32]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 32]) -> bool[src]
fn ne(&self, other: &&'b [B; 32]) -> boolThis method tests for !=.
impl<T> BorrowMut<[T]> for Vec<T>[src]
impl<T> BorrowMut<[T]> for Vec<T>fn borrow_mut(&mut self) -> &mut [T][src]
fn borrow_mut(&mut self) -> &mut [T]Mutably borrows from an owned value. Read more
impl<T> Hash for Vec<T> where
T: Hash, [src]
impl<T> Hash for Vec<T> where
T: Hash, fn hash<H>(&self, state: &mut H) where
H: Hasher, [src]
fn hash<H>(&self, state: &mut H) where
H: Hasher, Feeds this value into the given [Hasher]. Read more
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher, 1.3.0[src]
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher, Feeds a slice of this type into the given [Hasher]. Read more
impl<T> Eq for Vec<T> where
T: Eq, [src]
impl<T> Eq for Vec<T> where
T: Eq, impl<T> Drop for Vec<T>[src]
impl<T> Drop for Vec<T>impl<T> Borrow<[T]> for Vec<T>[src]
impl<T> Borrow<[T]> for Vec<T>impl<T> Ord for Vec<T> where
T: Ord, [src]
impl<T> Ord for Vec<T> where
T: Ord, 辞書式順序でベクターの順序を実装します。
fn cmp(&self, other: &Vec<T>) -> Ordering[src]
fn cmp(&self, other: &Vec<T>) -> OrderingThis method returns an Ordering between self and other. Read more
fn max(self, other: Self) -> Self1.21.0[src]
fn max(self, other: Self) -> SelfCompares and returns the maximum of two values. Read more
fn min(self, other: Self) -> Self1.21.0[src]
fn min(self, other: Self) -> SelfCompares and returns the minimum of two values. Read more
impl<T> FromIterator<T> for Vec<T>[src]
impl<T> FromIterator<T> for Vec<T>fn from_iter<I>(iter: I) -> Vec<T> where
I: IntoIterator<Item = T>, [src]
fn from_iter<I>(iter: I) -> Vec<T> where
I: IntoIterator<Item = T>, Creates a value from an iterator. Read more
impl<T, I> Index<I> for Vec<T> where
I: SliceIndex<[T]>, [src]
impl<T, I> Index<I> for Vec<T> where
I: SliceIndex<[T]>, type Output = <I as SliceIndex<[T]>>::Output
The returned type after indexing.
fn index(&self, index: I) -> &<Vec<T> as Index<I>>::Output[src]
fn index(&self, index: I) -> &<Vec<T> as Index<I>>::OutputPerforms the indexing (container[index]) operation.
impl<T> Clone for Vec<T> where
T: Clone, [src]
impl<T> Clone for Vec<T> where
T: Clone, fn clone(&self) -> Vec<T>[src]
fn clone(&self) -> Vec<T>Returns a copy of the value. Read more
fn clone_from(&mut self, other: &Vec<T>)[src]
fn clone_from(&mut self, other: &Vec<T>)Performs copy-assignment from source. Read more
impl<T> From<Vec<T>> for Rc<[T]>1.21.0[src]
impl<T> From<Vec<T>> for Rc<[T]>impl<'a, T> From<Vec<T>> for Cow<'a, [T]> where
T: Clone, 1.8.0[src]
impl<'a, T> From<Vec<T>> for Cow<'a, [T]> where
T: Clone, impl<'a, T> From<&'a Vec<T>> for Cow<'a, [T]> where
T: Clone, 1.28.0[src]
impl<'a, T> From<&'a Vec<T>> for Cow<'a, [T]> where
T: Clone, impl<'a, T> From<&'a [T]> for Vec<T> where
T: Clone, [src]
impl<'a, T> From<&'a [T]> for Vec<T> where
T: Clone, impl<T> From<Box<[T]>> for Vec<T>1.18.0[src]
impl<T> From<Box<[T]>> for Vec<T>impl<T> From<VecDeque<T>> for Vec<T>1.10.0[src]
impl<T> From<VecDeque<T>> for Vec<T>impl<T> From<Vec<T>> for BinaryHeap<T> where
T: Ord, 1.5.0[src]
impl<T> From<Vec<T>> for BinaryHeap<T> where
T: Ord, fn from(vec: Vec<T>) -> BinaryHeap<T>[src]
fn from(vec: Vec<T>) -> BinaryHeap<T>Performs the conversion.
impl From<String> for Vec<u8>1.14.0[src]
impl From<String> for Vec<u8>impl<T> From<Vec<T>> for VecDeque<T>1.10.0[src]
impl<T> From<Vec<T>> for VecDeque<T>impl<'a, T> From<Cow<'a, [T]>> for Vec<T> where
[T]: ToOwned,
<[T] as ToOwned>::Owned == Vec<T>, 1.14.0[src]
impl<'a, T> From<Cow<'a, [T]>> for Vec<T> where
[T]: ToOwned,
<[T] as ToOwned>::Owned == Vec<T>, impl<T> From<BinaryHeap<T>> for Vec<T>1.5.0[src]
impl<T> From<BinaryHeap<T>> for Vec<T>impl<'a> From<&'a str> for Vec<u8>[src]
impl<'a> From<&'a str> for Vec<u8>impl<T> From<Vec<T>> for Box<[T]>1.20.0[src]
impl<T> From<Vec<T>> for Box<[T]>impl<'a, T> From<&'a mut [T]> for Vec<T> where
T: Clone, 1.19.0[src]
impl<'a, T> From<&'a mut [T]> for Vec<T> where
T: Clone, impl<T> From<Vec<T>> for Arc<[T]>1.21.0[src]
impl<T> From<Vec<T>> for Arc<[T]>impl<T> AsRef<[T]> for Vec<T>[src]
impl<T> AsRef<[T]> for Vec<T>impl<T> AsRef<Vec<T>> for Vec<T>[src]
impl<T> AsRef<Vec<T>> for Vec<T>impl<'a, T> IntoIterator for &'a mut Vec<T>[src]
impl<'a, T> IntoIterator for &'a mut Vec<T>type Item = &'a mut T
The type of the elements being iterated over.
type IntoIter = IterMut<'a, T>
Which kind of iterator are we turning this into?
ⓘImportant traits for IterMut<'a, T>fn into_iter(self) -> IterMut<'a, T>[src]
fn into_iter(self) -> IterMut<'a, T>Creates an iterator from a value. Read more
impl<'a, T> IntoIterator for &'a Vec<T>[src]
impl<'a, T> IntoIterator for &'a Vec<T>type Item = &'a T
The type of the elements being iterated over.
type IntoIter = Iter<'a, T>
Which kind of iterator are we turning this into?
ⓘImportant traits for Iter<'a, T>fn into_iter(self) -> Iter<'a, T>[src]
fn into_iter(self) -> Iter<'a, T>Creates an iterator from a value. Read more
impl<T> IntoIterator for Vec<T>[src]
impl<T> IntoIterator for Vec<T>type Item = T
The type of the elements being iterated over.
type IntoIter = IntoIter<T>
Which kind of iterator are we turning this into?
ⓘImportant traits for IntoIter<T>fn into_iter(self) -> IntoIter<T>[src]
fn into_iter(self) -> IntoIter<T>impl<T> PartialOrd<Vec<T>> for Vec<T> where
T: PartialOrd<T>, [src]
impl<T> PartialOrd<Vec<T>> for Vec<T> where
T: PartialOrd<T>, 辞書式にベクターの比較を実装します。
fn partial_cmp(&self, other: &Vec<T>) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &Vec<T>) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
#[must_use]
fn lt(&self, other: &Rhs) -> bool[src]
#[must_use]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
#[must_use]
fn le(&self, other: &Rhs) -> bool[src]
#[must_use]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
#[must_use]
fn gt(&self, other: &Rhs) -> bool[src]
#[must_use]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
#[must_use]
fn ge(&self, other: &Rhs) -> bool[src]
#[must_use]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl<T, I> IndexMut<I> for Vec<T> where
I: SliceIndex<[T]>, [src]
impl<T, I> IndexMut<I> for Vec<T> where
I: SliceIndex<[T]>, fn index_mut(&mut self, index: I) -> &mut <Vec<T> as Index<I>>::Output[src]
fn index_mut(&mut self, index: I) -> &mut <Vec<T> as Index<I>>::OutputPerforms the mutable indexing (container[index]) operation.
impl<T> Extend<T> for Vec<T>[src]
impl<T> Extend<T> for Vec<T>fn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = T>, [src]
fn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = T>, Extends a collection with the contents of an iterator. Read more
impl<'a, T> Extend<&'a T> for Vec<T> where
T: 'a + Copy, 1.2.0[src]
impl<'a, T> Extend<&'a T> for Vec<T> where
T: 'a + Copy, Vecに要素をプッシュする前に参照からコピーするExtendの実装です。
この実装はスライスイテレータに特化していて、一度に要素全体を追加するためにcopy_from_sliceを使います。
fn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = &'a T>, [src]
fn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = &'a T>, Extends a collection with the contents of an iterator. Read more
impl<T> AsMut<[T]> for Vec<T>1.5.0[src]
impl<T> AsMut<[T]> for Vec<T>impl<T> AsMut<Vec<T>> for Vec<T>1.5.0[src]
impl<T> AsMut<Vec<T>> for Vec<T>impl<T> Deref for Vec<T>[src]
impl<T> Deref for Vec<T>type Target = [T]
The resulting type after dereferencing.
fn deref(&self) -> &[T][src]
fn deref(&self) -> &[T]Dereferences the value.
impl<T> Debug for Vec<T> where
T: Debug, [src]
impl<T> Debug for Vec<T> where
T: Debug, fn fmt(&self, f: &mut Formatter) -> Result<(), Error>[src]
fn fmt(&self, f: &mut Formatter) -> Result<(), Error>Formats the value using the given formatter. Read more
impl<T> Default for Vec<T>[src]
impl<T> Default for Vec<T>impl From<CString> for Vec<u8>1.7.0[src]
impl From<CString> for Vec<u8>impl Write for Vec<u8>[src]
impl Write for Vec<u8>Write is implemented for Vec<u8> by appending to the vector.
The vector will grow as needed.
fn write(&mut self, buf: &[u8]) -> Result<usize>[src]
fn write(&mut self, buf: &[u8]) -> Result<usize>Write a buffer into this object, returning how many bytes were written. Read more
fn write_all(&mut self, buf: &[u8]) -> Result<()>[src]
fn write_all(&mut self, buf: &[u8]) -> Result<()>Attempts to write an entire buffer into this write. Read more
fn flush(&mut self) -> Result<()>[src]
fn flush(&mut self) -> Result<()>Flush this output stream, ensuring that all intermediately buffered contents reach their destination. Read more
fn write_fmt(&mut self, fmt: Arguments) -> Result<()>[src]
fn write_fmt(&mut self, fmt: Arguments) -> Result<()>Writes a formatted string into this writer, returning any error encountered. Read more
ⓘImportant traits for &'a mut Ifn by_ref(&mut self) -> &mut Self where
Self: Sized, [src]
fn by_ref(&mut self) -> &mut Self where
Self: Sized, Creates a "by reference" adaptor for this instance of Write. Read more