1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A priority queue implemented with a binary heap. //! //! Insertion and popping the largest element have `O(log n)` time complexity. //! Checking the largest element is `O(1)`. Converting a vector to a binary heap //! can be done in-place, and has `O(n)` complexity. A binary heap can also be //! converted to a sorted vector in-place, allowing it to be used for an `O(n //! log n)` in-place heapsort. //! //! # Examples //! //! This is a larger example that implements [Dijkstra's algorithm][dijkstra] //! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph]. //! It shows how to use [`BinaryHeap`] with custom types. //! //! [dijkstra]: http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm //! [sssp]: http://en.wikipedia.org/wiki/Shortest_path_problem //! [dir_graph]: http://en.wikipedia.org/wiki/Directed_graph //! [`BinaryHeap`]: struct.BinaryHeap.html //! //! ``` //! use std::cmp::Ordering; //! use std::collections::BinaryHeap; //! use std::usize; //! //! #[derive(Copy, Clone, Eq, PartialEq)] //! struct State { //! cost: usize, //! position: usize, //! } //! //! // The priority queue depends on `Ord`. //! // Explicitly implement the trait so the queue becomes a min-heap //! // instead of a max-heap. //! impl Ord for State { //! fn cmp(&self, other: &State) -> Ordering { //! // Notice that the we flip the ordering on costs. //! // In case of a tie we compare positions - this step is necessary //! // to make implementations of `PartialEq` and `Ord` consistent. //! other.cost.cmp(&self.cost) //! .then_with(|| self.position.cmp(&other.position)) //! } //! } //! //! // `PartialOrd` needs to be implemented as well. //! impl PartialOrd for State { //! fn partial_cmp(&self, other: &State) -> Option<Ordering> { //! Some(self.cmp(other)) //! } //! } //! //! // Each node is represented as an `usize`, for a shorter implementation. //! struct Edge { //! node: usize, //! cost: usize, //! } //! //! // Dijkstra's shortest path algorithm. //! //! // Start at `start` and use `dist` to track the current shortest distance //! // to each node. This implementation isn't memory-efficient as it may leave duplicate //! // nodes in the queue. It also uses `usize::MAX` as a sentinel value, //! // for a simpler implementation. //! fn shortest_path(adj_list: &Vec<Vec<Edge>>, start: usize, goal: usize) -> Option<usize> { //! // dist[node] = current shortest distance from `start` to `node` //! let mut dist: Vec<_> = (0..adj_list.len()).map(|_| usize::MAX).collect(); //! //! let mut heap = BinaryHeap::new(); //! //! // We're at `start`, with a zero cost //! dist[start] = 0; //! heap.push(State { cost: 0, position: start }); //! //! // Examine the frontier with lower cost nodes first (min-heap) //! while let Some(State { cost, position }) = heap.pop() { //! // Alternatively we could have continued to find all shortest paths //! if position == goal { return Some(cost); } //! //! // Important as we may have already found a better way //! if cost > dist[position] { continue; } //! //! // For each node we can reach, see if we can find a way with //! // a lower cost going through this node //! for edge in &adj_list[position] { //! let next = State { cost: cost + edge.cost, position: edge.node }; //! //! // If so, add it to the frontier and continue //! if next.cost < dist[next.position] { //! heap.push(next); //! // Relaxation, we have now found a better way //! dist[next.position] = next.cost; //! } //! } //! } //! //! // Goal not reachable //! None //! } //! //! fn main() { //! // This is the directed graph we're going to use. //! // The node numbers correspond to the different states, //! // and the edge weights symbolize the cost of moving //! // from one node to another. //! // Note that the edges are one-way. //! // //! // 7 //! // +-----------------+ //! // | | //! // v 1 2 | 2 //! // 0 -----> 1 -----> 3 ---> 4 //! // | ^ ^ ^ //! // | | 1 | | //! // | | | 3 | 1 //! // +------> 2 -------+ | //! // 10 | | //! // +---------------+ //! // //! // The graph is represented as an adjacency list where each index, //! // corresponding to a node value, has a list of outgoing edges. //! // Chosen for its efficiency. //! let graph = vec![ //! // Node 0 //! vec![Edge { node: 2, cost: 10 }, //! Edge { node: 1, cost: 1 }], //! // Node 1 //! vec![Edge { node: 3, cost: 2 }], //! // Node 2 //! vec![Edge { node: 1, cost: 1 }, //! Edge { node: 3, cost: 3 }, //! Edge { node: 4, cost: 1 }], //! // Node 3 //! vec![Edge { node: 0, cost: 7 }, //! Edge { node: 4, cost: 2 }], //! // Node 4 //! vec![]]; //! //! assert_eq!(shortest_path(&graph, 0, 1), Some(1)); //! assert_eq!(shortest_path(&graph, 0, 3), Some(3)); //! assert_eq!(shortest_path(&graph, 3, 0), Some(7)); //! assert_eq!(shortest_path(&graph, 0, 4), Some(5)); //! assert_eq!(shortest_path(&graph, 4, 0), None); //! } //! ``` #![allow(missing_docs)] #![stable(feature = "rust1", since = "1.0.0")] use core::ops::{Deref, DerefMut}; use core::iter::{FromIterator, FusedIterator}; use core::mem::{swap, size_of, ManuallyDrop}; use core::ptr; use core::fmt; use slice; use vec::{self, Vec}; use super::SpecExtend; /// A priority queue implemented with a binary heap. /// /// This will be a max-heap. /// /// It is a logic error for an item to be modified in such a way that the /// item's ordering relative to any other item, as determined by the `Ord` /// trait, changes while it is in the heap. This is normally only possible /// through `Cell`, `RefCell`, global state, I/O, or unsafe code. /// /// # Examples /// /// ``` /// use std::collections::BinaryHeap; /// /// // Type inference lets us omit an explicit type signature (which /// // would be `BinaryHeap<i32>` in this example). /// let mut heap = BinaryHeap::new(); /// /// // We can use peek to look at the next item in the heap. In this case, /// // there's no items in there yet so we get None. /// assert_eq!(heap.peek(), None); /// /// // Let's add some scores... /// heap.push(1); /// heap.push(5); /// heap.push(2); /// /// // Now peek shows the most important item in the heap. /// assert_eq!(heap.peek(), Some(&5)); /// /// // We can check the length of a heap. /// assert_eq!(heap.len(), 3); /// /// // We can iterate over the items in the heap, although they are returned in /// // a random order. /// for x in &heap { /// println!("{}", x); /// } /// /// // If we instead pop these scores, they should come back in order. /// assert_eq!(heap.pop(), Some(5)); /// assert_eq!(heap.pop(), Some(2)); /// assert_eq!(heap.pop(), Some(1)); /// assert_eq!(heap.pop(), None); /// /// // We can clear the heap of any remaining items. /// heap.clear(); /// /// // The heap should now be empty. /// assert!(heap.is_empty()) /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub struct BinaryHeap<T> { data: Vec<T>, } /// Structure wrapping a mutable reference to the greatest item on a /// `BinaryHeap`. /// /// This `struct` is created by the [`peek_mut`] method on [`BinaryHeap`]. See /// its documentation for more. /// /// [`peek_mut`]: struct.BinaryHeap.html#method.peek_mut /// [`BinaryHeap`]: struct.BinaryHeap.html #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] pub struct PeekMut<'a, T: 'a + Ord> { heap: &'a mut BinaryHeap<T>, sift: bool, } #[stable(feature = "collection_debug", since = "1.17.0")] impl<'a, T: Ord + fmt::Debug> fmt::Debug for PeekMut<'a, T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_tuple("PeekMut") .field(&self.heap.data[0]) .finish() } } #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] impl<'a, T: Ord> Drop for PeekMut<'a, T> { fn drop(&mut self) { if self.sift { self.heap.sift_down(0); } } } #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] impl<'a, T: Ord> Deref for PeekMut<'a, T> { type Target = T; fn deref(&self) -> &T { &self.heap.data[0] } } #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] impl<'a, T: Ord> DerefMut for PeekMut<'a, T> { fn deref_mut(&mut self) -> &mut T { &mut self.heap.data[0] } } impl<'a, T: Ord> PeekMut<'a, T> { /// Removes the peeked value from the heap and returns it. #[stable(feature = "binary_heap_peek_mut_pop", since = "1.18.0")] pub fn pop(mut this: PeekMut<'a, T>) -> T { let value = this.heap.pop().unwrap(); this.sift = false; value } } #[stable(feature = "rust1", since = "1.0.0")] impl<T: Clone> Clone for BinaryHeap<T> { fn clone(&self) -> Self { BinaryHeap { data: self.data.clone() } } fn clone_from(&mut self, source: &Self) { self.data.clone_from(&source.data); } } #[stable(feature = "rust1", since = "1.0.0")] impl<T: Ord> Default for BinaryHeap<T> { /// Creates an empty `BinaryHeap<T>`. #[inline] fn default() -> BinaryHeap<T> { BinaryHeap::new() } } #[stable(feature = "binaryheap_debug", since = "1.4.0")] impl<T: fmt::Debug + Ord> fmt::Debug for BinaryHeap<T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_list().entries(self.iter()).finish() } } impl<T: Ord> BinaryHeap<T> { /// Creates an empty `BinaryHeap` as a max-heap. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::new(); /// heap.push(4); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn new() -> BinaryHeap<T> { BinaryHeap { data: vec![] } } /// Creates an empty `BinaryHeap` with a specific capacity. /// This preallocates enough memory for `capacity` elements, /// so that the `BinaryHeap` does not have to be reallocated /// until it contains at least that many values. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::with_capacity(10); /// heap.push(4); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn with_capacity(capacity: usize) -> BinaryHeap<T> { BinaryHeap { data: Vec::with_capacity(capacity) } } /// Returns an iterator visiting all values in the underlying vector, in /// arbitrary order. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let heap = BinaryHeap::from(vec![1, 2, 3, 4]); /// /// // Print 1, 2, 3, 4 in arbitrary order /// for x in heap.iter() { /// println!("{}", x); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn iter(&self) -> Iter<T> { Iter { iter: self.data.iter() } } /// Returns the greatest item in the binary heap, or `None` if it is empty. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::new(); /// assert_eq!(heap.peek(), None); /// /// heap.push(1); /// heap.push(5); /// heap.push(2); /// assert_eq!(heap.peek(), Some(&5)); /// /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn peek(&self) -> Option<&T> { self.data.get(0) } /// Returns a mutable reference to the greatest item in the binary heap, or /// `None` if it is empty. /// /// Note: If the `PeekMut` value is leaked, the heap may be in an /// inconsistent state. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::new(); /// assert!(heap.peek_mut().is_none()); /// /// heap.push(1); /// heap.push(5); /// heap.push(2); /// { /// let mut val = heap.peek_mut().unwrap(); /// *val = 0; /// } /// assert_eq!(heap.peek(), Some(&2)); /// ``` #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] pub fn peek_mut(&mut self) -> Option<PeekMut<T>> { if self.is_empty() { None } else { Some(PeekMut { heap: self, sift: true, }) } } /// Returns the number of elements the binary heap can hold without reallocating. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::with_capacity(100); /// assert!(heap.capacity() >= 100); /// heap.push(4); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn capacity(&self) -> usize { self.data.capacity() } /// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the /// given `BinaryHeap`. Does nothing if the capacity is already sufficient. /// /// Note that the allocator may give the collection more space than it requests. Therefore /// capacity can not be relied upon to be precisely minimal. Prefer [`reserve`] if future /// insertions are expected. /// /// # Panics /// /// Panics if the new capacity overflows `usize`. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::new(); /// heap.reserve_exact(100); /// assert!(heap.capacity() >= 100); /// heap.push(4); /// ``` /// /// [`reserve`]: #method.reserve #[stable(feature = "rust1", since = "1.0.0")] pub fn reserve_exact(&mut self, additional: usize) { self.data.reserve_exact(additional); } /// Reserves capacity for at least `additional` more elements to be inserted in the /// `BinaryHeap`. The collection may reserve more space to avoid frequent reallocations. /// /// # Panics /// /// Panics if the new capacity overflows `usize`. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::new(); /// heap.reserve(100); /// assert!(heap.capacity() >= 100); /// heap.push(4); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn reserve(&mut self, additional: usize) { self.data.reserve(additional); } /// Discards as much additional capacity as possible. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100); /// /// assert!(heap.capacity() >= 100); /// heap.shrink_to_fit(); /// assert!(heap.capacity() == 0); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn shrink_to_fit(&mut self) { self.data.shrink_to_fit(); } /// Discards capacity with a lower bound. /// /// The capacity will remain at least as large as both the length /// and the supplied value. /// /// Panics if the current capacity is smaller than the supplied /// minimum capacity. /// /// # Examples /// /// ``` /// #![feature(shrink_to)] /// use std::collections::BinaryHeap; /// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100); /// /// assert!(heap.capacity() >= 100); /// heap.shrink_to(10); /// assert!(heap.capacity() >= 10); /// ``` #[inline] #[unstable(feature = "shrink_to", reason = "new API", issue="0")] pub fn shrink_to(&mut self, min_capacity: usize) { self.data.shrink_to(min_capacity) } /// Removes the greatest item from the binary heap and returns it, or `None` if it /// is empty. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::from(vec![1, 3]); /// /// assert_eq!(heap.pop(), Some(3)); /// assert_eq!(heap.pop(), Some(1)); /// assert_eq!(heap.pop(), None); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn pop(&mut self) -> Option<T> { self.data.pop().map(|mut item| { if !self.is_empty() { swap(&mut item, &mut self.data[0]); self.sift_down_to_bottom(0); } item }) } /// Pushes an item onto the binary heap. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::new(); /// heap.push(3); /// heap.push(5); /// heap.push(1); /// /// assert_eq!(heap.len(), 3); /// assert_eq!(heap.peek(), Some(&5)); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn push(&mut self, item: T) { let old_len = self.len(); self.data.push(item); self.sift_up(0, old_len); } /// Consumes the `BinaryHeap` and returns the underlying vector /// in arbitrary order. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let heap = BinaryHeap::from(vec![1, 2, 3, 4, 5, 6, 7]); /// let vec = heap.into_vec(); /// /// // Will print in some order /// for x in vec { /// println!("{}", x); /// } /// ``` #[stable(feature = "binary_heap_extras_15", since = "1.5.0")] pub fn into_vec(self) -> Vec<T> { self.into() } /// Consumes the `BinaryHeap` and returns a vector in sorted /// (ascending) order. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// /// let mut heap = BinaryHeap::from(vec![1, 2, 4, 5, 7]); /// heap.push(6); /// heap.push(3); /// /// let vec = heap.into_sorted_vec(); /// assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]); /// ``` #[stable(feature = "binary_heap_extras_15", since = "1.5.0")] pub fn into_sorted_vec(mut self) -> Vec<T> { let mut end = self.len(); while end > 1 { end -= 1; self.data.swap(0, end); self.sift_down_range(0, end); } self.into_vec() } // The implementations of sift_up and sift_down use unsafe blocks in // order to move an element out of the vector (leaving behind a // hole), shift along the others and move the removed element back into the // vector at the final location of the hole. // The `Hole` type is used to represent this, and make sure // the hole is filled back at the end of its scope, even on panic. // Using a hole reduces the constant factor compared to using swaps, // which involves twice as many moves. fn sift_up(&mut self, start: usize, pos: usize) -> usize { unsafe { // Take out the value at `pos` and create a hole. let mut hole = Hole::new(&mut self.data, pos); while hole.pos() > start { let parent = (hole.pos() - 1) / 2; if hole.element() <= hole.get(parent) { break; } hole.move_to(parent); } hole.pos() } } /// Take an element at `pos` and move it down the heap, /// while its children are larger. fn sift_down_range(&mut self, pos: usize, end: usize) { unsafe { let mut hole = Hole::new(&mut self.data, pos); let mut child = 2 * pos + 1; while child < end { let right = child + 1; // compare with the greater of the two children if right < end && !(hole.get(child) > hole.get(right)) { child = right; } // if we are already in order, stop. if hole.element() >= hole.get(child) { break; } hole.move_to(child); child = 2 * hole.pos() + 1; } } } fn sift_down(&mut self, pos: usize) { let len = self.len(); self.sift_down_range(pos, len); } /// Take an element at `pos` and move it all the way down the heap, /// then sift it up to its position. /// /// Note: This is faster when the element is known to be large / should /// be closer to the bottom. fn sift_down_to_bottom(&mut self, mut pos: usize) { let end = self.len(); let start = pos; unsafe { let mut hole = Hole::new(&mut self.data, pos); let mut child = 2 * pos + 1; while child < end { let right = child + 1; // compare with the greater of the two children if right < end && !(hole.get(child) > hole.get(right)) { child = right; } hole.move_to(child); child = 2 * hole.pos() + 1; } pos = hole.pos; } self.sift_up(start, pos); } /// Returns the length of the binary heap. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let heap = BinaryHeap::from(vec![1, 3]); /// /// assert_eq!(heap.len(), 2); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn len(&self) -> usize { self.data.len() } /// Checks if the binary heap is empty. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::new(); /// /// assert!(heap.is_empty()); /// /// heap.push(3); /// heap.push(5); /// heap.push(1); /// /// assert!(!heap.is_empty()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn is_empty(&self) -> bool { self.len() == 0 } /// Clears the binary heap, returning an iterator over the removed elements. /// /// The elements are removed in arbitrary order. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::from(vec![1, 3]); /// /// assert!(!heap.is_empty()); /// /// for x in heap.drain() { /// println!("{}", x); /// } /// /// assert!(heap.is_empty()); /// ``` #[inline] #[stable(feature = "drain", since = "1.6.0")] pub fn drain(&mut self) -> Drain<T> { Drain { iter: self.data.drain(..) } } /// Drops all items from the binary heap. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::from(vec![1, 3]); /// /// assert!(!heap.is_empty()); /// /// heap.clear(); /// /// assert!(heap.is_empty()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn clear(&mut self) { self.drain(); } fn rebuild(&mut self) { let mut n = self.len() / 2; while n > 0 { n -= 1; self.sift_down(n); } } /// Moves all the elements of `other` into `self`, leaving `other` empty. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// /// let v = vec![-10, 1, 2, 3, 3]; /// let mut a = BinaryHeap::from(v); /// /// let v = vec![-20, 5, 43]; /// let mut b = BinaryHeap::from(v); /// /// a.append(&mut b); /// /// assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]); /// assert!(b.is_empty()); /// ``` #[stable(feature = "binary_heap_append", since = "1.11.0")] pub fn append(&mut self, other: &mut Self) { if self.len() < other.len() { swap(self, other); } if other.is_empty() { return; } #[inline(always)] fn log2_fast(x: usize) -> usize { 8 * size_of::<usize>() - (x.leading_zeros() as usize) - 1 } // `rebuild` takes O(len1 + len2) operations // and about 2 * (len1 + len2) comparisons in the worst case // while `extend` takes O(len2 * log_2(len1)) operations // and about 1 * len2 * log_2(len1) comparisons in the worst case, // assuming len1 >= len2. #[inline] fn better_to_rebuild(len1: usize, len2: usize) -> bool { 2 * (len1 + len2) < len2 * log2_fast(len1) } if better_to_rebuild(self.len(), other.len()) { self.data.append(&mut other.data); self.rebuild(); } else { self.extend(other.drain()); } } } /// Hole represents a hole in a slice i.e. an index without valid value /// (because it was moved from or duplicated). /// In drop, `Hole` will restore the slice by filling the hole /// position with the value that was originally removed. struct Hole<'a, T: 'a> { data: &'a mut [T], elt: ManuallyDrop<T>, pos: usize, } impl<'a, T> Hole<'a, T> { /// Create a new Hole at index `pos`. /// /// Unsafe because pos must be within the data slice. #[inline] unsafe fn new(data: &'a mut [T], pos: usize) -> Self { debug_assert!(pos < data.len()); let elt = ptr::read(&data[pos]); Hole { data, elt: ManuallyDrop::new(elt), pos, } } #[inline] fn pos(&self) -> usize { self.pos } /// Returns a reference to the element removed. #[inline] fn element(&self) -> &T { &self.elt } /// Returns a reference to the element at `index`. /// /// Unsafe because index must be within the data slice and not equal to pos. #[inline] unsafe fn get(&self, index: usize) -> &T { debug_assert!(index != self.pos); debug_assert!(index < self.data.len()); self.data.get_unchecked(index) } /// Move hole to new location /// /// Unsafe because index must be within the data slice and not equal to pos. #[inline] unsafe fn move_to(&mut self, index: usize) { debug_assert!(index != self.pos); debug_assert!(index < self.data.len()); let index_ptr: *const _ = self.data.get_unchecked(index); let hole_ptr = self.data.get_unchecked_mut(self.pos); ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1); self.pos = index; } } impl<'a, T> Drop for Hole<'a, T> { #[inline] fn drop(&mut self) { // fill the hole again unsafe { let pos = self.pos; ptr::copy_nonoverlapping(&*self.elt, self.data.get_unchecked_mut(pos), 1); } } } /// An iterator over the elements of a `BinaryHeap`. /// /// This `struct` is created by the [`iter`] method on [`BinaryHeap`]. See its /// documentation for more. /// /// [`iter`]: struct.BinaryHeap.html#method.iter /// [`BinaryHeap`]: struct.BinaryHeap.html #[stable(feature = "rust1", since = "1.0.0")] pub struct Iter<'a, T: 'a> { iter: slice::Iter<'a, T>, } #[stable(feature = "collection_debug", since = "1.17.0")] impl<'a, T: 'a + fmt::Debug> fmt::Debug for Iter<'a, T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_tuple("Iter") .field(&self.iter.as_slice()) .finish() } } // FIXME(#26925) Remove in favor of `#[derive(Clone)]` #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> Clone for Iter<'a, T> { fn clone(&self) -> Iter<'a, T> { Iter { iter: self.iter.clone() } } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> Iterator for Iter<'a, T> { type Item = &'a T; #[inline] fn next(&mut self) -> Option<&'a T> { self.iter.next() } #[inline] fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> DoubleEndedIterator for Iter<'a, T> { #[inline] fn next_back(&mut self) -> Option<&'a T> { self.iter.next_back() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> ExactSizeIterator for Iter<'a, T> { fn is_empty(&self) -> bool { self.iter.is_empty() } } #[stable(feature = "fused", since = "1.26.0")] impl<'a, T> FusedIterator for Iter<'a, T> {} /// An owning iterator over the elements of a `BinaryHeap`. /// /// This `struct` is created by the [`into_iter`] method on [`BinaryHeap`][`BinaryHeap`] /// (provided by the `IntoIterator` trait). See its documentation for more. /// /// [`into_iter`]: struct.BinaryHeap.html#method.into_iter /// [`BinaryHeap`]: struct.BinaryHeap.html #[stable(feature = "rust1", since = "1.0.0")] #[derive(Clone)] pub struct IntoIter<T> { iter: vec::IntoIter<T>, } #[stable(feature = "collection_debug", since = "1.17.0")] impl<T: fmt::Debug> fmt::Debug for IntoIter<T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_tuple("IntoIter") .field(&self.iter.as_slice()) .finish() } } #[stable(feature = "rust1", since = "1.0.0")] impl<T> Iterator for IntoIter<T> { type Item = T; #[inline] fn next(&mut self) -> Option<T> { self.iter.next() } #[inline] fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl<T> DoubleEndedIterator for IntoIter<T> { #[inline] fn next_back(&mut self) -> Option<T> { self.iter.next_back() } } #[stable(feature = "rust1", since = "1.0.0")] impl<T> ExactSizeIterator for IntoIter<T> { fn is_empty(&self) -> bool { self.iter.is_empty() } } #[stable(feature = "fused", since = "1.26.0")] impl<T> FusedIterator for IntoIter<T> {} /// A draining iterator over the elements of a `BinaryHeap`. /// /// This `struct` is created by the [`drain`] method on [`BinaryHeap`]. See its /// documentation for more. /// /// [`drain`]: struct.BinaryHeap.html#method.drain /// [`BinaryHeap`]: struct.BinaryHeap.html #[stable(feature = "drain", since = "1.6.0")] #[derive(Debug)] pub struct Drain<'a, T: 'a> { iter: vec::Drain<'a, T>, } #[stable(feature = "drain", since = "1.6.0")] impl<'a, T: 'a> Iterator for Drain<'a, T> { type Item = T; #[inline] fn next(&mut self) -> Option<T> { self.iter.next() } #[inline] fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() } } #[stable(feature = "drain", since = "1.6.0")] impl<'a, T: 'a> DoubleEndedIterator for Drain<'a, T> { #[inline] fn next_back(&mut self) -> Option<T> { self.iter.next_back() } } #[stable(feature = "drain", since = "1.6.0")] impl<'a, T: 'a> ExactSizeIterator for Drain<'a, T> { fn is_empty(&self) -> bool { self.iter.is_empty() } } #[stable(feature = "fused", since = "1.26.0")] impl<'a, T: 'a> FusedIterator for Drain<'a, T> {} #[stable(feature = "binary_heap_extras_15", since = "1.5.0")] impl<T: Ord> From<Vec<T>> for BinaryHeap<T> { fn from(vec: Vec<T>) -> BinaryHeap<T> { let mut heap = BinaryHeap { data: vec }; heap.rebuild(); heap } } #[stable(feature = "binary_heap_extras_15", since = "1.5.0")] impl<T> From<BinaryHeap<T>> for Vec<T> { fn from(heap: BinaryHeap<T>) -> Vec<T> { heap.data } } #[stable(feature = "rust1", since = "1.0.0")] impl<T: Ord> FromIterator<T> for BinaryHeap<T> { fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> BinaryHeap<T> { BinaryHeap::from(iter.into_iter().collect::<Vec<_>>()) } } #[stable(feature = "rust1", since = "1.0.0")] impl<T: Ord> IntoIterator for BinaryHeap<T> { type Item = T; type IntoIter = IntoIter<T>; /// Creates a consuming iterator, that is, one that moves each value out of /// the binary heap in arbitrary order. The binary heap cannot be used /// after calling this. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let heap = BinaryHeap::from(vec![1, 2, 3, 4]); /// /// // Print 1, 2, 3, 4 in arbitrary order /// for x in heap.into_iter() { /// // x has type i32, not &i32 /// println!("{}", x); /// } /// ``` fn into_iter(self) -> IntoIter<T> { IntoIter { iter: self.data.into_iter() } } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> IntoIterator for &'a BinaryHeap<T> where T: Ord { type Item = &'a T; type IntoIter = Iter<'a, T>; fn into_iter(self) -> Iter<'a, T> { self.iter() } } #[stable(feature = "rust1", since = "1.0.0")] impl<T: Ord> Extend<T> for BinaryHeap<T> { #[inline] fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) { <Self as SpecExtend<I>>::spec_extend(self, iter); } } impl<T: Ord, I: IntoIterator<Item = T>> SpecExtend<I> for BinaryHeap<T> { default fn spec_extend(&mut self, iter: I) { self.extend_desugared(iter.into_iter()); } } impl<T: Ord> SpecExtend<BinaryHeap<T>> for BinaryHeap<T> { fn spec_extend(&mut self, ref mut other: BinaryHeap<T>) { self.append(other); } } impl<T: Ord> BinaryHeap<T> { fn extend_desugared<I: IntoIterator<Item = T>>(&mut self, iter: I) { let iterator = iter.into_iter(); let (lower, _) = iterator.size_hint(); self.reserve(lower); for elem in iterator { self.push(elem); } } } #[stable(feature = "extend_ref", since = "1.2.0")] impl<'a, T: 'a + Ord + Copy> Extend<&'a T> for BinaryHeap<T> { fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) { self.extend(iter.into_iter().cloned()); } }