Trait core::iter::DoubleEndedIterator1.0.0[][src]

pub trait DoubleEndedIterator: Iterator {
    fn next_back(&mut self) -> Option<Self::Item>;

    fn try_rfold<B, F, R>(&mut self, init: B, f: F) -> R
    where
        Self: Sized,
        F: FnMut(B, Self::Item) -> R,
        R: Try<Ok = B>
, { ... }
fn rfold<B, F>(self, accum: B, f: F) -> B
    where
        Self: Sized,
        F: FnMut(B, Self::Item) -> B
, { ... }
fn rfind<P>(&mut self, predicate: P) -> Option<Self::Item>
    where
        Self: Sized,
        P: FnMut(&Self::Item) -> bool
, { ... } }

An iterator able to yield elements from both ends.

Something that implements DoubleEndedIterator has one extra capability over something that implements Iterator: the ability to also take Items from the back, as well as the front.

It is important to note that both back and forth work on the same range, and do not cross: iteration is over when they meet in the middle.

In a similar fashion to the Iterator protocol, once a DoubleEndedIterator returns None from a next_back(), calling it again may or may not ever return Some again. next() and next_back() are interchangeable for this purpose.

Examples

Basic usage:

let numbers = vec![1, 2, 3, 4, 5, 6];

let mut iter = numbers.iter();

assert_eq!(Some(&1), iter.next());
assert_eq!(Some(&6), iter.next_back());
assert_eq!(Some(&5), iter.next_back());
assert_eq!(Some(&2), iter.next());
assert_eq!(Some(&3), iter.next());
assert_eq!(Some(&4), iter.next());
assert_eq!(None, iter.next());
assert_eq!(None, iter.next_back());Run

Required Methods

Removes and returns an element from the end of the iterator.

Returns None when there are no more elements.

The trait-level docs contain more details.

Examples

Basic usage:

let numbers = vec![1, 2, 3, 4, 5, 6];

let mut iter = numbers.iter();

assert_eq!(Some(&1), iter.next());
assert_eq!(Some(&6), iter.next_back());
assert_eq!(Some(&5), iter.next_back());
assert_eq!(Some(&2), iter.next());
assert_eq!(Some(&3), iter.next());
assert_eq!(Some(&4), iter.next());
assert_eq!(None, iter.next());
assert_eq!(None, iter.next_back());Run

Provided Methods

This is the reverse version of try_fold(): it takes elements starting from the back of the iterator.

Examples

Basic usage:

let a = ["1", "2", "3"];
let sum = a.iter()
    .map(|&s| s.parse::<i32>())
    .try_rfold(0, |acc, x| x.and_then(|y| Ok(acc + y)));
assert_eq!(sum, Ok(6));Run

Short-circuiting:

let a = ["1", "rust", "3"];
let mut it = a.iter();
let sum = it
    .by_ref()
    .map(|&s| s.parse::<i32>())
    .try_rfold(0, |acc, x| x.and_then(|y| Ok(acc + y)));
assert!(sum.is_err());

// Because it short-circuited, the remaining elements are still
// available through the iterator.
assert_eq!(it.next_back(), Some(&"1"));Run

An iterator method that reduces the iterator's elements to a single, final value, starting from the back.

This is the reverse version of fold(): it takes elements starting from the back of the iterator.

rfold() takes two arguments: an initial value, and a closure with two arguments: an 'accumulator', and an element. The closure returns the value that the accumulator should have for the next iteration.

The initial value is the value the accumulator will have on the first call.

After applying this closure to every element of the iterator, rfold() returns the accumulator.

This operation is sometimes called 'reduce' or 'inject'.

Folding is useful whenever you have a collection of something, and want to produce a single value from it.

Examples

Basic usage:

let a = [1, 2, 3];

// the sum of all of the elements of a
let sum = a.iter()
           .rfold(0, |acc, &x| acc + x);

assert_eq!(sum, 6);Run

This example builds a string, starting with an initial value and continuing with each element from the back until the front:

let numbers = [1, 2, 3, 4, 5];

let zero = "0".to_string();

let result = numbers.iter().rfold(zero, |acc, &x| {
    format!("({} + {})", x, acc)
});

assert_eq!(result, "(1 + (2 + (3 + (4 + (5 + 0)))))");Run

Searches for an element of an iterator from the back that satisfies a predicate.

rfind() takes a closure that returns true or false. It applies this closure to each element of the iterator, starting at the end, and if any of them return true, then rfind() returns Some(element). If they all return false, it returns None.

rfind() is short-circuiting; in other words, it will stop processing as soon as the closure returns true.

Because rfind() takes a reference, and many iterators iterate over references, this leads to a possibly confusing situation where the argument is a double reference. You can see this effect in the examples below, with &&x.

Examples

Basic usage:

let a = [1, 2, 3];

assert_eq!(a.iter().rfind(|&&x| x == 2), Some(&2));

assert_eq!(a.iter().rfind(|&&x| x == 5), None);Run

Stopping at the first true:

let a = [1, 2, 3];

let mut iter = a.iter();

assert_eq!(iter.rfind(|&&x| x == 2), Some(&2));

// we can still use `iter`, as there are more elements.
assert_eq!(iter.next_back(), Some(&1));Run

Implementors