1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! rustc compiler intrinsics. //! //! The corresponding definitions are in librustc_codegen_llvm/intrinsic.rs. //! //! # Volatiles //! //! The volatile intrinsics provide operations intended to act on I/O //! memory, which are guaranteed to not be reordered by the compiler //! across other volatile intrinsics. See the LLVM documentation on //! [[volatile]]. //! //! [volatile]: http://llvm.org/docs/LangRef.html#volatile-memory-accesses //! //! # Atomics //! //! The atomic intrinsics provide common atomic operations on machine //! words, with multiple possible memory orderings. They obey the same //! semantics as C++11. See the LLVM documentation on [[atomics]]. //! //! [atomics]: http://llvm.org/docs/Atomics.html //! //! A quick refresher on memory ordering: //! //! * Acquire - a barrier for acquiring a lock. Subsequent reads and writes //! take place after the barrier. //! * Release - a barrier for releasing a lock. Preceding reads and writes //! take place before the barrier. //! * Sequentially consistent - sequentially consistent operations are //! guaranteed to happen in order. This is the standard mode for working //! with atomic types and is equivalent to Java's `volatile`. #![unstable(feature = "core_intrinsics", reason = "intrinsics are unlikely to ever be stabilized, instead \ they should be used through stabilized interfaces \ in the rest of the standard library", issue = "0")] #![allow(missing_docs)] #[stable(feature = "drop_in_place", since = "1.8.0")] #[rustc_deprecated(reason = "no longer an intrinsic - use `ptr::drop_in_place` directly", since = "1.18.0")] pub use ptr::drop_in_place; extern "rust-intrinsic" { // NB: These intrinsics take raw pointers because they mutate aliased // memory, which is not valid for either `&` or `&mut`. /// Stores a value if the current value is the same as the `old` value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `compare_exchange` method by passing /// [`Ordering::SeqCst`](../../std/sync/atomic/enum.Ordering.html) /// as both the `success` and `failure` parameters. For example, /// [`AtomicBool::compare_exchange`][compare_exchange]. /// /// [compare_exchange]: ../../std/sync/atomic/struct.AtomicBool.html#method.compare_exchange pub fn atomic_cxchg<T>(dst: *mut T, old: T, src: T) -> (T, bool); /// Stores a value if the current value is the same as the `old` value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `compare_exchange` method by passing /// [`Ordering::Acquire`](../../std/sync/atomic/enum.Ordering.html) /// as both the `success` and `failure` parameters. For example, /// [`AtomicBool::compare_exchange`][compare_exchange]. /// /// [compare_exchange]: ../../std/sync/atomic/struct.AtomicBool.html#method.compare_exchange pub fn atomic_cxchg_acq<T>(dst: *mut T, old: T, src: T) -> (T, bool); /// Stores a value if the current value is the same as the `old` value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `compare_exchange` method by passing /// [`Ordering::Release`](../../std/sync/atomic/enum.Ordering.html) /// as the `success` and /// [`Ordering::Relaxed`](../../std/sync/atomic/enum.Ordering.html) /// as the `failure` parameters. For example, /// [`AtomicBool::compare_exchange`][compare_exchange]. /// /// [compare_exchange]: ../../std/sync/atomic/struct.AtomicBool.html#method.compare_exchange pub fn atomic_cxchg_rel<T>(dst: *mut T, old: T, src: T) -> (T, bool); /// Stores a value if the current value is the same as the `old` value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `compare_exchange` method by passing /// [`Ordering::AcqRel`](../../std/sync/atomic/enum.Ordering.html) /// as the `success` and /// [`Ordering::Acquire`](../../std/sync/atomic/enum.Ordering.html) /// as the `failure` parameters. For example, /// [`AtomicBool::compare_exchange`][compare_exchange]. /// /// [compare_exchange]: ../../std/sync/atomic/struct.AtomicBool.html#method.compare_exchange pub fn atomic_cxchg_acqrel<T>(dst: *mut T, old: T, src: T) -> (T, bool); /// Stores a value if the current value is the same as the `old` value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `compare_exchange` method by passing /// [`Ordering::Relaxed`](../../std/sync/atomic/enum.Ordering.html) /// as both the `success` and `failure` parameters. For example, /// [`AtomicBool::compare_exchange`][compare_exchange]. /// /// [compare_exchange]: ../../std/sync/atomic/struct.AtomicBool.html#method.compare_exchange pub fn atomic_cxchg_relaxed<T>(dst: *mut T, old: T, src: T) -> (T, bool); /// Stores a value if the current value is the same as the `old` value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `compare_exchange` method by passing /// [`Ordering::SeqCst`](../../std/sync/atomic/enum.Ordering.html) /// as the `success` and /// [`Ordering::Relaxed`](../../std/sync/atomic/enum.Ordering.html) /// as the `failure` parameters. For example, /// [`AtomicBool::compare_exchange`][compare_exchange]. /// /// [compare_exchange]: ../../std/sync/atomic/struct.AtomicBool.html#method.compare_exchange pub fn atomic_cxchg_failrelaxed<T>(dst: *mut T, old: T, src: T) -> (T, bool); /// Stores a value if the current value is the same as the `old` value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `compare_exchange` method by passing /// [`Ordering::SeqCst`](../../std/sync/atomic/enum.Ordering.html) /// as the `success` and /// [`Ordering::Acquire`](../../std/sync/atomic/enum.Ordering.html) /// as the `failure` parameters. For example, /// [`AtomicBool::compare_exchange`][compare_exchange]. /// /// [compare_exchange]: ../../std/sync/atomic/struct.AtomicBool.html#method.compare_exchange pub fn atomic_cxchg_failacq<T>(dst: *mut T, old: T, src: T) -> (T, bool); /// Stores a value if the current value is the same as the `old` value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `compare_exchange` method by passing /// [`Ordering::Acquire`](../../std/sync/atomic/enum.Ordering.html) /// as the `success` and /// [`Ordering::Relaxed`](../../std/sync/atomic/enum.Ordering.html) /// as the `failure` parameters. For example, /// [`AtomicBool::compare_exchange`][compare_exchange]. /// /// [compare_exchange]: ../../std/sync/atomic/struct.AtomicBool.html#method.compare_exchange pub fn atomic_cxchg_acq_failrelaxed<T>(dst: *mut T, old: T, src: T) -> (T, bool); /// Stores a value if the current value is the same as the `old` value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `compare_exchange` method by passing /// [`Ordering::AcqRel`](../../std/sync/atomic/enum.Ordering.html) /// as the `success` and /// [`Ordering::Relaxed`](../../std/sync/atomic/enum.Ordering.html) /// as the `failure` parameters. For example, /// [`AtomicBool::compare_exchange`][compare_exchange]. /// /// [compare_exchange]: ../../std/sync/atomic/struct.AtomicBool.html#method.compare_exchange pub fn atomic_cxchg_acqrel_failrelaxed<T>(dst: *mut T, old: T, src: T) -> (T, bool); /// Stores a value if the current value is the same as the `old` value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `compare_exchange_weak` method by passing /// [`Ordering::SeqCst`](../../std/sync/atomic/enum.Ordering.html) /// as both the `success` and `failure` parameters. For example, /// [`AtomicBool::compare_exchange_weak`][cew]. /// /// [cew]: ../../std/sync/atomic/struct.AtomicBool.html#method.compare_exchange_weak pub fn atomic_cxchgweak<T>(dst: *mut T, old: T, src: T) -> (T, bool); /// Stores a value if the current value is the same as the `old` value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `compare_exchange_weak` method by passing /// [`Ordering::Acquire`](../../std/sync/atomic/enum.Ordering.html) /// as both the `success` and `failure` parameters. For example, /// [`AtomicBool::compare_exchange_weak`][cew]. /// /// [cew]: ../../std/sync/atomic/struct.AtomicBool.html#method.compare_exchange_weak pub fn atomic_cxchgweak_acq<T>(dst: *mut T, old: T, src: T) -> (T, bool); /// Stores a value if the current value is the same as the `old` value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `compare_exchange_weak` method by passing /// [`Ordering::Release`](../../std/sync/atomic/enum.Ordering.html) /// as the `success` and /// [`Ordering::Relaxed`](../../std/sync/atomic/enum.Ordering.html) /// as the `failure` parameters. For example, /// [`AtomicBool::compare_exchange_weak`][cew]. /// /// [cew]: ../../std/sync/atomic/struct.AtomicBool.html#method.compare_exchange_weak pub fn atomic_cxchgweak_rel<T>(dst: *mut T, old: T, src: T) -> (T, bool); /// Stores a value if the current value is the same as the `old` value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `compare_exchange_weak` method by passing /// [`Ordering::AcqRel`](../../std/sync/atomic/enum.Ordering.html) /// as the `success` and /// [`Ordering::Acquire`](../../std/sync/atomic/enum.Ordering.html) /// as the `failure` parameters. For example, /// [`AtomicBool::compare_exchange_weak`][cew]. /// /// [cew]: ../../std/sync/atomic/struct.AtomicBool.html#method.compare_exchange_weak pub fn atomic_cxchgweak_acqrel<T>(dst: *mut T, old: T, src: T) -> (T, bool); /// Stores a value if the current value is the same as the `old` value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `compare_exchange_weak` method by passing /// [`Ordering::Relaxed`](../../std/sync/atomic/enum.Ordering.html) /// as both the `success` and `failure` parameters. For example, /// [`AtomicBool::compare_exchange_weak`][cew]. /// /// [cew]: ../../std/sync/atomic/struct.AtomicBool.html#method.compare_exchange_weak pub fn atomic_cxchgweak_relaxed<T>(dst: *mut T, old: T, src: T) -> (T, bool); /// Stores a value if the current value is the same as the `old` value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `compare_exchange_weak` method by passing /// [`Ordering::SeqCst`](../../std/sync/atomic/enum.Ordering.html) /// as the `success` and /// [`Ordering::Relaxed`](../../std/sync/atomic/enum.Ordering.html) /// as the `failure` parameters. For example, /// [`AtomicBool::compare_exchange_weak`][cew]. /// /// [cew]: ../../std/sync/atomic/struct.AtomicBool.html#method.compare_exchange_weak pub fn atomic_cxchgweak_failrelaxed<T>(dst: *mut T, old: T, src: T) -> (T, bool); /// Stores a value if the current value is the same as the `old` value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `compare_exchange_weak` method by passing /// [`Ordering::SeqCst`](../../std/sync/atomic/enum.Ordering.html) /// as the `success` and /// [`Ordering::Acquire`](../../std/sync/atomic/enum.Ordering.html) /// as the `failure` parameters. For example, /// [`AtomicBool::compare_exchange_weak`][cew]. /// /// [cew]: ../../std/sync/atomic/struct.AtomicBool.html#method.compare_exchange_weak pub fn atomic_cxchgweak_failacq<T>(dst: *mut T, old: T, src: T) -> (T, bool); /// Stores a value if the current value is the same as the `old` value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `compare_exchange_weak` method by passing /// [`Ordering::Acquire`](../../std/sync/atomic/enum.Ordering.html) /// as the `success` and /// [`Ordering::Relaxed`](../../std/sync/atomic/enum.Ordering.html) /// as the `failure` parameters. For example, /// [`AtomicBool::compare_exchange_weak`][cew]. /// /// [cew]: ../../std/sync/atomic/struct.AtomicBool.html#method.compare_exchange_weak pub fn atomic_cxchgweak_acq_failrelaxed<T>(dst: *mut T, old: T, src: T) -> (T, bool); /// Stores a value if the current value is the same as the `old` value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `compare_exchange_weak` method by passing /// [`Ordering::AcqRel`](../../std/sync/atomic/enum.Ordering.html) /// as the `success` and /// [`Ordering::Relaxed`](../../std/sync/atomic/enum.Ordering.html) /// as the `failure` parameters. For example, /// [`AtomicBool::compare_exchange_weak`][cew]. /// /// [cew]: ../../std/sync/atomic/struct.AtomicBool.html#method.compare_exchange_weak pub fn atomic_cxchgweak_acqrel_failrelaxed<T>(dst: *mut T, old: T, src: T) -> (T, bool); /// Loads the current value of the pointer. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `load` method by passing /// [`Ordering::SeqCst`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::load`](../../std/sync/atomic/struct.AtomicBool.html#method.load). pub fn atomic_load<T>(src: *const T) -> T; /// Loads the current value of the pointer. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `load` method by passing /// [`Ordering::Acquire`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::load`](../../std/sync/atomic/struct.AtomicBool.html#method.load). pub fn atomic_load_acq<T>(src: *const T) -> T; /// Loads the current value of the pointer. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `load` method by passing /// [`Ordering::Relaxed`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::load`](../../std/sync/atomic/struct.AtomicBool.html#method.load). pub fn atomic_load_relaxed<T>(src: *const T) -> T; pub fn atomic_load_unordered<T>(src: *const T) -> T; /// Stores the value at the specified memory location. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `store` method by passing /// [`Ordering::SeqCst`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::store`](../../std/sync/atomic/struct.AtomicBool.html#method.store). pub fn atomic_store<T>(dst: *mut T, val: T); /// Stores the value at the specified memory location. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `store` method by passing /// [`Ordering::Release`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::store`](../../std/sync/atomic/struct.AtomicBool.html#method.store). pub fn atomic_store_rel<T>(dst: *mut T, val: T); /// Stores the value at the specified memory location. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `store` method by passing /// [`Ordering::Relaxed`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::store`](../../std/sync/atomic/struct.AtomicBool.html#method.store). pub fn atomic_store_relaxed<T>(dst: *mut T, val: T); pub fn atomic_store_unordered<T>(dst: *mut T, val: T); /// Stores the value at the specified memory location, returning the old value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `swap` method by passing /// [`Ordering::SeqCst`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::swap`](../../std/sync/atomic/struct.AtomicBool.html#method.swap). pub fn atomic_xchg<T>(dst: *mut T, src: T) -> T; /// Stores the value at the specified memory location, returning the old value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `swap` method by passing /// [`Ordering::Acquire`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::swap`](../../std/sync/atomic/struct.AtomicBool.html#method.swap). pub fn atomic_xchg_acq<T>(dst: *mut T, src: T) -> T; /// Stores the value at the specified memory location, returning the old value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `swap` method by passing /// [`Ordering::Release`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::swap`](../../std/sync/atomic/struct.AtomicBool.html#method.swap). pub fn atomic_xchg_rel<T>(dst: *mut T, src: T) -> T; /// Stores the value at the specified memory location, returning the old value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `swap` method by passing /// [`Ordering::AcqRel`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::swap`](../../std/sync/atomic/struct.AtomicBool.html#method.swap). pub fn atomic_xchg_acqrel<T>(dst: *mut T, src: T) -> T; /// Stores the value at the specified memory location, returning the old value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `swap` method by passing /// [`Ordering::Relaxed`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::swap`](../../std/sync/atomic/struct.AtomicBool.html#method.swap). pub fn atomic_xchg_relaxed<T>(dst: *mut T, src: T) -> T; /// Add to the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `fetch_add` method by passing /// [`Ordering::SeqCst`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicIsize::fetch_add`](../../std/sync/atomic/struct.AtomicIsize.html#method.fetch_add). pub fn atomic_xadd<T>(dst: *mut T, src: T) -> T; /// Add to the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `fetch_add` method by passing /// [`Ordering::Acquire`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicIsize::fetch_add`](../../std/sync/atomic/struct.AtomicIsize.html#method.fetch_add). pub fn atomic_xadd_acq<T>(dst: *mut T, src: T) -> T; /// Add to the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `fetch_add` method by passing /// [`Ordering::Release`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicIsize::fetch_add`](../../std/sync/atomic/struct.AtomicIsize.html#method.fetch_add). pub fn atomic_xadd_rel<T>(dst: *mut T, src: T) -> T; /// Add to the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `fetch_add` method by passing /// [`Ordering::AcqRel`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicIsize::fetch_add`](../../std/sync/atomic/struct.AtomicIsize.html#method.fetch_add). pub fn atomic_xadd_acqrel<T>(dst: *mut T, src: T) -> T; /// Add to the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `fetch_add` method by passing /// [`Ordering::Relaxed`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicIsize::fetch_add`](../../std/sync/atomic/struct.AtomicIsize.html#method.fetch_add). pub fn atomic_xadd_relaxed<T>(dst: *mut T, src: T) -> T; /// Subtract from the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `fetch_sub` method by passing /// [`Ordering::SeqCst`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicIsize::fetch_sub`](../../std/sync/atomic/struct.AtomicIsize.html#method.fetch_sub). pub fn atomic_xsub<T>(dst: *mut T, src: T) -> T; /// Subtract from the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `fetch_sub` method by passing /// [`Ordering::Acquire`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicIsize::fetch_sub`](../../std/sync/atomic/struct.AtomicIsize.html#method.fetch_sub). pub fn atomic_xsub_acq<T>(dst: *mut T, src: T) -> T; /// Subtract from the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `fetch_sub` method by passing /// [`Ordering::Release`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicIsize::fetch_sub`](../../std/sync/atomic/struct.AtomicIsize.html#method.fetch_sub). pub fn atomic_xsub_rel<T>(dst: *mut T, src: T) -> T; /// Subtract from the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `fetch_sub` method by passing /// [`Ordering::AcqRel`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicIsize::fetch_sub`](../../std/sync/atomic/struct.AtomicIsize.html#method.fetch_sub). pub fn atomic_xsub_acqrel<T>(dst: *mut T, src: T) -> T; /// Subtract from the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `fetch_sub` method by passing /// [`Ordering::Relaxed`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicIsize::fetch_sub`](../../std/sync/atomic/struct.AtomicIsize.html#method.fetch_sub). pub fn atomic_xsub_relaxed<T>(dst: *mut T, src: T) -> T; /// Bitwise and with the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `fetch_and` method by passing /// [`Ordering::SeqCst`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::fetch_and`](../../std/sync/atomic/struct.AtomicBool.html#method.fetch_and). pub fn atomic_and<T>(dst: *mut T, src: T) -> T; /// Bitwise and with the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `fetch_and` method by passing /// [`Ordering::Acquire`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::fetch_and`](../../std/sync/atomic/struct.AtomicBool.html#method.fetch_and). pub fn atomic_and_acq<T>(dst: *mut T, src: T) -> T; /// Bitwise and with the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `fetch_and` method by passing /// [`Ordering::Release`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::fetch_and`](../../std/sync/atomic/struct.AtomicBool.html#method.fetch_and). pub fn atomic_and_rel<T>(dst: *mut T, src: T) -> T; /// Bitwise and with the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `fetch_and` method by passing /// [`Ordering::AcqRel`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::fetch_and`](../../std/sync/atomic/struct.AtomicBool.html#method.fetch_and). pub fn atomic_and_acqrel<T>(dst: *mut T, src: T) -> T; /// Bitwise and with the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `fetch_and` method by passing /// [`Ordering::Relaxed`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::fetch_and`](../../std/sync/atomic/struct.AtomicBool.html#method.fetch_and). pub fn atomic_and_relaxed<T>(dst: *mut T, src: T) -> T; /// Bitwise nand with the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic::AtomicBool` type via the `fetch_nand` method by passing /// [`Ordering::SeqCst`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::fetch_nand`](../../std/sync/atomic/struct.AtomicBool.html#method.fetch_nand). pub fn atomic_nand<T>(dst: *mut T, src: T) -> T; /// Bitwise nand with the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic::AtomicBool` type via the `fetch_nand` method by passing /// [`Ordering::Acquire`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::fetch_nand`](../../std/sync/atomic/struct.AtomicBool.html#method.fetch_nand). pub fn atomic_nand_acq<T>(dst: *mut T, src: T) -> T; /// Bitwise nand with the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic::AtomicBool` type via the `fetch_nand` method by passing /// [`Ordering::Release`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::fetch_nand`](../../std/sync/atomic/struct.AtomicBool.html#method.fetch_nand). pub fn atomic_nand_rel<T>(dst: *mut T, src: T) -> T; /// Bitwise nand with the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic::AtomicBool` type via the `fetch_nand` method by passing /// [`Ordering::AcqRel`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::fetch_nand`](../../std/sync/atomic/struct.AtomicBool.html#method.fetch_nand). pub fn atomic_nand_acqrel<T>(dst: *mut T, src: T) -> T; /// Bitwise nand with the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic::AtomicBool` type via the `fetch_nand` method by passing /// [`Ordering::Relaxed`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::fetch_nand`](../../std/sync/atomic/struct.AtomicBool.html#method.fetch_nand). pub fn atomic_nand_relaxed<T>(dst: *mut T, src: T) -> T; /// Bitwise or with the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `fetch_or` method by passing /// [`Ordering::SeqCst`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::fetch_or`](../../std/sync/atomic/struct.AtomicBool.html#method.fetch_or). pub fn atomic_or<T>(dst: *mut T, src: T) -> T; /// Bitwise or with the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `fetch_or` method by passing /// [`Ordering::Acquire`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::fetch_or`](../../std/sync/atomic/struct.AtomicBool.html#method.fetch_or). pub fn atomic_or_acq<T>(dst: *mut T, src: T) -> T; /// Bitwise or with the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `fetch_or` method by passing /// [`Ordering::Release`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::fetch_or`](../../std/sync/atomic/struct.AtomicBool.html#method.fetch_or). pub fn atomic_or_rel<T>(dst: *mut T, src: T) -> T; /// Bitwise or with the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `fetch_or` method by passing /// [`Ordering::AcqRel`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::fetch_or`](../../std/sync/atomic/struct.AtomicBool.html#method.fetch_or). pub fn atomic_or_acqrel<T>(dst: *mut T, src: T) -> T; /// Bitwise or with the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `fetch_or` method by passing /// [`Ordering::Relaxed`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::fetch_or`](../../std/sync/atomic/struct.AtomicBool.html#method.fetch_or). pub fn atomic_or_relaxed<T>(dst: *mut T, src: T) -> T; /// Bitwise xor with the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `fetch_xor` method by passing /// [`Ordering::SeqCst`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::fetch_xor`](../../std/sync/atomic/struct.AtomicBool.html#method.fetch_xor). pub fn atomic_xor<T>(dst: *mut T, src: T) -> T; /// Bitwise xor with the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `fetch_xor` method by passing /// [`Ordering::Acquire`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::fetch_xor`](../../std/sync/atomic/struct.AtomicBool.html#method.fetch_xor). pub fn atomic_xor_acq<T>(dst: *mut T, src: T) -> T; /// Bitwise xor with the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `fetch_xor` method by passing /// [`Ordering::Release`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::fetch_xor`](../../std/sync/atomic/struct.AtomicBool.html#method.fetch_xor). pub fn atomic_xor_rel<T>(dst: *mut T, src: T) -> T; /// Bitwise xor with the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `fetch_xor` method by passing /// [`Ordering::AcqRel`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::fetch_xor`](../../std/sync/atomic/struct.AtomicBool.html#method.fetch_xor). pub fn atomic_xor_acqrel<T>(dst: *mut T, src: T) -> T; /// Bitwise xor with the current value, returning the previous value. /// The stabilized version of this intrinsic is available on the /// `std::sync::atomic` types via the `fetch_xor` method by passing /// [`Ordering::Relaxed`](../../std/sync/atomic/enum.Ordering.html) /// as the `order`. For example, /// [`AtomicBool::fetch_xor`](../../std/sync/atomic/struct.AtomicBool.html#method.fetch_xor). pub fn atomic_xor_relaxed<T>(dst: *mut T, src: T) -> T; pub fn atomic_max<T>(dst: *mut T, src: T) -> T; pub fn atomic_max_acq<T>(dst: *mut T, src: T) -> T; pub fn atomic_max_rel<T>(dst: *mut T, src: T) -> T; pub fn atomic_max_acqrel<T>(dst: *mut T, src: T) -> T; pub fn atomic_max_relaxed<T>(dst: *mut T, src: T) -> T; pub fn atomic_min<T>(dst: *mut T, src: T) -> T; pub fn atomic_min_acq<T>(dst: *mut T, src: T) -> T; pub fn atomic_min_rel<T>(dst: *mut T, src: T) -> T; pub fn atomic_min_acqrel<T>(dst: *mut T, src: T) -> T; pub fn atomic_min_relaxed<T>(dst: *mut T, src: T) -> T; pub fn atomic_umin<T>(dst: *mut T, src: T) -> T; pub fn atomic_umin_acq<T>(dst: *mut T, src: T) -> T; pub fn atomic_umin_rel<T>(dst: *mut T, src: T) -> T; pub fn atomic_umin_acqrel<T>(dst: *mut T, src: T) -> T; pub fn atomic_umin_relaxed<T>(dst: *mut T, src: T) -> T; pub fn atomic_umax<T>(dst: *mut T, src: T) -> T; pub fn atomic_umax_acq<T>(dst: *mut T, src: T) -> T; pub fn atomic_umax_rel<T>(dst: *mut T, src: T) -> T; pub fn atomic_umax_acqrel<T>(dst: *mut T, src: T) -> T; pub fn atomic_umax_relaxed<T>(dst: *mut T, src: T) -> T; /// The `prefetch` intrinsic is a hint to the code generator to insert a prefetch instruction /// if supported; otherwise, it is a noop. /// Prefetches have no effect on the behavior of the program but can change its performance /// characteristics. /// /// The `locality` argument must be a constant integer and is a temporal locality specifier /// ranging from (0) - no locality, to (3) - extremely local keep in cache pub fn prefetch_read_data<T>(data: *const T, locality: i32); /// The `prefetch` intrinsic is a hint to the code generator to insert a prefetch instruction /// if supported; otherwise, it is a noop. /// Prefetches have no effect on the behavior of the program but can change its performance /// characteristics. /// /// The `locality` argument must be a constant integer and is a temporal locality specifier /// ranging from (0) - no locality, to (3) - extremely local keep in cache pub fn prefetch_write_data<T>(data: *const T, locality: i32); /// The `prefetch` intrinsic is a hint to the code generator to insert a prefetch instruction /// if supported; otherwise, it is a noop. /// Prefetches have no effect on the behavior of the program but can change its performance /// characteristics. /// /// The `locality` argument must be a constant integer and is a temporal locality specifier /// ranging from (0) - no locality, to (3) - extremely local keep in cache pub fn prefetch_read_instruction<T>(data: *const T, locality: i32); /// The `prefetch` intrinsic is a hint to the code generator to insert a prefetch instruction /// if supported; otherwise, it is a noop. /// Prefetches have no effect on the behavior of the program but can change its performance /// characteristics. /// /// The `locality` argument must be a constant integer and is a temporal locality specifier /// ranging from (0) - no locality, to (3) - extremely local keep in cache pub fn prefetch_write_instruction<T>(data: *const T, locality: i32); } extern "rust-intrinsic" { pub fn atomic_fence(); pub fn atomic_fence_acq(); pub fn atomic_fence_rel(); pub fn atomic_fence_acqrel(); /// A compiler-only memory barrier. /// /// Memory accesses will never be reordered across this barrier by the /// compiler, but no instructions will be emitted for it. This is /// appropriate for operations on the same thread that may be preempted, /// such as when interacting with signal handlers. pub fn atomic_singlethreadfence(); pub fn atomic_singlethreadfence_acq(); pub fn atomic_singlethreadfence_rel(); pub fn atomic_singlethreadfence_acqrel(); /// Magic intrinsic that derives its meaning from attributes /// attached to the function. /// /// For example, dataflow uses this to inject static assertions so /// that `rustc_peek(potentially_uninitialized)` would actually /// double-check that dataflow did indeed compute that it is /// uninitialized at that point in the control flow. pub fn rustc_peek<T>(_: T) -> T; /// Aborts the execution of the process. /// /// The stabilized version of this intrinsic is /// [`std::process::abort`](../../std/process/fn.abort.html) pub fn abort() -> !; /// Tells LLVM that this point in the code is not reachable, enabling /// further optimizations. /// /// NB: This is very different from the `unreachable!()` macro: Unlike the /// macro, which panics when it is executed, it is *undefined behavior* to /// reach code marked with this function. /// /// The stabilized version of this intrinsic is /// [`std::hint::unreachable_unchecked`](../../std/hint/fn.unreachable_unchecked.html). pub fn unreachable() -> !; /// Informs the optimizer that a condition is always true. /// If the condition is false, the behavior is undefined. /// /// No code is generated for this intrinsic, but the optimizer will try /// to preserve it (and its condition) between passes, which may interfere /// with optimization of surrounding code and reduce performance. It should /// not be used if the invariant can be discovered by the optimizer on its /// own, or if it does not enable any significant optimizations. pub fn assume(b: bool); /// Hints to the compiler that branch condition is likely to be true. /// Returns the value passed to it. /// /// Any use other than with `if` statements will probably not have an effect. pub fn likely(b: bool) -> bool; /// Hints to the compiler that branch condition is likely to be false. /// Returns the value passed to it. /// /// Any use other than with `if` statements will probably not have an effect. pub fn unlikely(b: bool) -> bool; /// Executes a breakpoint trap, for inspection by a debugger. pub fn breakpoint(); /// The size of a type in bytes. /// /// More specifically, this is the offset in bytes between successive /// items of the same type, including alignment padding. pub fn size_of<T>() -> usize; /// Moves a value to an uninitialized memory location. /// /// Drop glue is not run on the destination. pub fn move_val_init<T>(dst: *mut T, src: T); pub fn min_align_of<T>() -> usize; pub fn pref_align_of<T>() -> usize; /// The size of the referenced value in bytes. /// /// The stabilized version of this intrinsic is /// [`std::mem::size_of_val`](../../std/mem/fn.size_of_val.html). pub fn size_of_val<T: ?Sized>(_: &T) -> usize; pub fn min_align_of_val<T: ?Sized>(_: &T) -> usize; /// Gets a static string slice containing the name of a type. pub fn type_name<T: ?Sized>() -> &'static str; /// Gets an identifier which is globally unique to the specified type. This /// function will return the same value for a type regardless of whichever /// crate it is invoked in. pub fn type_id<T: ?Sized + 'static>() -> u64; /// Creates a value initialized to zero. /// /// `init` is unsafe because it returns a zeroed-out datum, /// which is unsafe unless T is `Copy`. Also, even if T is /// `Copy`, an all-zero value may not correspond to any legitimate /// state for the type in question. pub fn init<T>() -> T; /// Creates an uninitialized value. /// /// `uninit` is unsafe because there is no guarantee of what its /// contents are. In particular its drop-flag may be set to any /// state, which means it may claim either dropped or /// undropped. In the general case one must use `ptr::write` to /// initialize memory previous set to the result of `uninit`. pub fn uninit<T>() -> T; /// Reinterprets the bits of a value of one type as another type. /// /// Both types must have the same size. Neither the original, nor the result, /// may be an [invalid value](../../nomicon/what-unsafe-does.html). /// /// `transmute` is semantically equivalent to a bitwise move of one type /// into another. It copies the bits from the source value into the /// destination value, then forgets the original. It's equivalent to C's /// `memcpy` under the hood, just like `transmute_copy`. /// /// `transmute` is **incredibly** unsafe. There are a vast number of ways to /// cause [undefined behavior][ub] with this function. `transmute` should be /// the absolute last resort. /// /// The [nomicon](../../nomicon/transmutes.html) has additional /// documentation. /// /// [ub]: ../../reference/behavior-considered-undefined.html /// /// # Examples /// /// There are a few things that `transmute` is really useful for. /// /// Getting the bitpattern of a floating point type (or, more generally, /// type punning, when `T` and `U` aren't pointers): /// /// ``` /// let bitpattern = unsafe { /// std::mem::transmute::<f32, u32>(1.0) /// }; /// assert_eq!(bitpattern, 0x3F800000); /// ``` /// /// Turning a pointer into a function pointer. This is *not* portable to /// machines where function pointers and data pointers have different sizes. /// /// ``` /// fn foo() -> i32 { /// 0 /// } /// let pointer = foo as *const (); /// let function = unsafe { /// std::mem::transmute::<*const (), fn() -> i32>(pointer) /// }; /// assert_eq!(function(), 0); /// ``` /// /// Extending a lifetime, or shortening an invariant lifetime. This is /// advanced, very unsafe Rust! /// /// ``` /// struct R<'a>(&'a i32); /// unsafe fn extend_lifetime<'b>(r: R<'b>) -> R<'static> { /// std::mem::transmute::<R<'b>, R<'static>>(r) /// } /// /// unsafe fn shorten_invariant_lifetime<'b, 'c>(r: &'b mut R<'static>) /// -> &'b mut R<'c> { /// std::mem::transmute::<&'b mut R<'static>, &'b mut R<'c>>(r) /// } /// ``` /// /// # Alternatives /// /// Don't despair: many uses of `transmute` can be achieved through other means. /// Below are common applications of `transmute` which can be replaced with safer /// constructs. /// /// Turning a pointer into a `usize`: /// /// ``` /// let ptr = &0; /// let ptr_num_transmute = unsafe { /// std::mem::transmute::<&i32, usize>(ptr) /// }; /// /// // Use an `as` cast instead /// let ptr_num_cast = ptr as *const i32 as usize; /// ``` /// /// Turning a `*mut T` into an `&mut T`: /// /// ``` /// let ptr: *mut i32 = &mut 0; /// let ref_transmuted = unsafe { /// std::mem::transmute::<*mut i32, &mut i32>(ptr) /// }; /// /// // Use a reborrow instead /// let ref_casted = unsafe { &mut *ptr }; /// ``` /// /// Turning an `&mut T` into an `&mut U`: /// /// ``` /// let ptr = &mut 0; /// let val_transmuted = unsafe { /// std::mem::transmute::<&mut i32, &mut u32>(ptr) /// }; /// /// // Now, put together `as` and reborrowing - note the chaining of `as` /// // `as` is not transitive /// let val_casts = unsafe { &mut *(ptr as *mut i32 as *mut u32) }; /// ``` /// /// Turning an `&str` into an `&[u8]`: /// /// ``` /// // this is not a good way to do this. /// let slice = unsafe { std::mem::transmute::<&str, &[u8]>("Rust") }; /// assert_eq!(slice, &[82, 117, 115, 116]); /// /// // You could use `str::as_bytes` /// let slice = "Rust".as_bytes(); /// assert_eq!(slice, &[82, 117, 115, 116]); /// /// // Or, just use a byte string, if you have control over the string /// // literal /// assert_eq!(b"Rust", &[82, 117, 115, 116]); /// ``` /// /// Turning a `Vec<&T>` into a `Vec<Option<&T>>`: /// /// ``` /// let store = [0, 1, 2, 3]; /// let mut v_orig = store.iter().collect::<Vec<&i32>>(); /// /// // Using transmute: this is Undefined Behavior, and a bad idea. /// // However, it is no-copy. /// let v_transmuted = unsafe { /// std::mem::transmute::<Vec<&i32>, Vec<Option<&i32>>>( /// v_orig.clone()) /// }; /// /// // This is the suggested, safe way. /// // It does copy the entire vector, though, into a new array. /// let v_collected = v_orig.clone() /// .into_iter() /// .map(|r| Some(r)) /// .collect::<Vec<Option<&i32>>>(); /// /// // The no-copy, unsafe way, still using transmute, but not UB. /// // This is equivalent to the original, but safer, and reuses the /// // same Vec internals. Therefore the new inner type must have the /// // exact same size, and the same alignment, as the old type. /// // The same caveats exist for this method as transmute, for /// // the original inner type (`&i32`) to the converted inner type /// // (`Option<&i32>`), so read the nomicon pages linked above. /// let v_from_raw = unsafe { /// Vec::from_raw_parts(v_orig.as_mut_ptr() as *mut Option<&i32>, /// v_orig.len(), /// v_orig.capacity()) /// }; /// std::mem::forget(v_orig); /// ``` /// /// Implementing `split_at_mut`: /// /// ``` /// use std::{slice, mem}; /// /// // There are multiple ways to do this; and there are multiple problems /// // with the following, transmute, way. /// fn split_at_mut_transmute<T>(slice: &mut [T], mid: usize) /// -> (&mut [T], &mut [T]) { /// let len = slice.len(); /// assert!(mid <= len); /// unsafe { /// let slice2 = mem::transmute::<&mut [T], &mut [T]>(slice); /// // first: transmute is not typesafe; all it checks is that T and /// // U are of the same size. Second, right here, you have two /// // mutable references pointing to the same memory. /// (&mut slice[0..mid], &mut slice2[mid..len]) /// } /// } /// /// // This gets rid of the typesafety problems; `&mut *` will *only* give /// // you an `&mut T` from an `&mut T` or `*mut T`. /// fn split_at_mut_casts<T>(slice: &mut [T], mid: usize) /// -> (&mut [T], &mut [T]) { /// let len = slice.len(); /// assert!(mid <= len); /// unsafe { /// let slice2 = &mut *(slice as *mut [T]); /// // however, you still have two mutable references pointing to /// // the same memory. /// (&mut slice[0..mid], &mut slice2[mid..len]) /// } /// } /// /// // This is how the standard library does it. This is the best method, if /// // you need to do something like this /// fn split_at_stdlib<T>(slice: &mut [T], mid: usize) /// -> (&mut [T], &mut [T]) { /// let len = slice.len(); /// assert!(mid <= len); /// unsafe { /// let ptr = slice.as_mut_ptr(); /// // This now has three mutable references pointing at the same /// // memory. `slice`, the rvalue ret.0, and the rvalue ret.1. /// // `slice` is never used after `let ptr = ...`, and so one can /// // treat it as "dead", and therefore, you only have two real /// // mutable slices. /// (slice::from_raw_parts_mut(ptr, mid), /// slice::from_raw_parts_mut(ptr.offset(mid as isize), len - mid)) /// } /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn transmute<T, U>(e: T) -> U; /// Returns `true` if the actual type given as `T` requires drop /// glue; returns `false` if the actual type provided for `T` /// implements `Copy`. /// /// If the actual type neither requires drop glue nor implements /// `Copy`, then may return `true` or `false`. /// /// The stabilized version of this intrinsic is /// [`std::mem::needs_drop`](../../std/mem/fn.needs_drop.html). pub fn needs_drop<T>() -> bool; /// Calculates the offset from a pointer. /// /// This is implemented as an intrinsic to avoid converting to and from an /// integer, since the conversion would throw away aliasing information. /// /// # Safety /// /// Both the starting and resulting pointer must be either in bounds or one /// byte past the end of an allocated object. If either pointer is out of /// bounds or arithmetic overflow occurs then any further use of the /// returned value will result in undefined behavior. pub fn offset<T>(dst: *const T, offset: isize) -> *const T; /// Calculates the offset from a pointer, potentially wrapping. /// /// This is implemented as an intrinsic to avoid converting to and from an /// integer, since the conversion inhibits certain optimizations. /// /// # Safety /// /// Unlike the `offset` intrinsic, this intrinsic does not restrict the /// resulting pointer to point into or one byte past the end of an allocated /// object, and it wraps with two's complement arithmetic. The resulting /// value is not necessarily valid to be used to actually access memory. pub fn arith_offset<T>(dst: *const T, offset: isize) -> *const T; /// Copies `count * size_of<T>` bytes from `src` to `dst`. The source /// and destination may *not* overlap. /// /// `copy_nonoverlapping` is semantically equivalent to C's `memcpy`. /// /// # Safety /// /// Beyond requiring that the program must be allowed to access both regions /// of memory, it is Undefined Behavior for source and destination to /// overlap. Care must also be taken with the ownership of `src` and /// `dst`. This method semantically moves the values of `src` into `dst`. /// However it does not drop the contents of `dst`, or prevent the contents /// of `src` from being dropped or used. /// /// # Examples /// /// A safe swap function: /// /// ``` /// use std::mem; /// use std::ptr; /// /// # #[allow(dead_code)] /// fn swap<T>(x: &mut T, y: &mut T) { /// unsafe { /// // Give ourselves some scratch space to work with /// let mut t: T = mem::uninitialized(); /// /// // Perform the swap, `&mut` pointers never alias /// ptr::copy_nonoverlapping(x, &mut t, 1); /// ptr::copy_nonoverlapping(y, x, 1); /// ptr::copy_nonoverlapping(&t, y, 1); /// /// // y and t now point to the same thing, but we need to completely forget `t` /// // because it's no longer relevant. /// mem::forget(t); /// } /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn copy_nonoverlapping<T>(src: *const T, dst: *mut T, count: usize); /// Copies `count * size_of<T>` bytes from `src` to `dst`. The source /// and destination may overlap. /// /// `copy` is semantically equivalent to C's `memmove`. /// /// # Safety /// /// Care must be taken with the ownership of `src` and `dst`. /// This method semantically moves the values of `src` into `dst`. /// However it does not drop the contents of `dst`, or prevent the contents of `src` /// from being dropped or used. /// /// # Examples /// /// Efficiently create a Rust vector from an unsafe buffer: /// /// ``` /// use std::ptr; /// /// # #[allow(dead_code)] /// unsafe fn from_buf_raw<T>(ptr: *const T, elts: usize) -> Vec<T> { /// let mut dst = Vec::with_capacity(elts); /// dst.set_len(elts); /// ptr::copy(ptr, dst.as_mut_ptr(), elts); /// dst /// } /// ``` /// #[stable(feature = "rust1", since = "1.0.0")] pub fn copy<T>(src: *const T, dst: *mut T, count: usize); /// Invokes memset on the specified pointer, setting `count * size_of::<T>()` /// bytes of memory starting at `dst` to `val`. /// /// # Examples /// /// ``` /// use std::ptr; /// /// let mut vec = vec![0; 4]; /// unsafe { /// let vec_ptr = vec.as_mut_ptr(); /// ptr::write_bytes(vec_ptr, b'a', 2); /// } /// assert_eq!(vec, [b'a', b'a', 0, 0]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn write_bytes<T>(dst: *mut T, val: u8, count: usize); /// Equivalent to the appropriate `llvm.memcpy.p0i8.0i8.*` intrinsic, with /// a size of `count` * `size_of::<T>()` and an alignment of /// `min_align_of::<T>()` /// /// The volatile parameter is set to `true`, so it will not be optimized out /// unless size is equal to zero. pub fn volatile_copy_nonoverlapping_memory<T>(dst: *mut T, src: *const T, count: usize); /// Equivalent to the appropriate `llvm.memmove.p0i8.0i8.*` intrinsic, with /// a size of `count` * `size_of::<T>()` and an alignment of /// `min_align_of::<T>()` /// /// The volatile parameter is set to `true`, so it will not be optimized out /// unless size is equal to zero.. pub fn volatile_copy_memory<T>(dst: *mut T, src: *const T, count: usize); /// Equivalent to the appropriate `llvm.memset.p0i8.*` intrinsic, with a /// size of `count` * `size_of::<T>()` and an alignment of /// `min_align_of::<T>()`. /// /// The volatile parameter is set to `true`, so it will not be optimized out /// unless size is equal to zero. pub fn volatile_set_memory<T>(dst: *mut T, val: u8, count: usize); /// Perform a volatile load from the `src` pointer. /// The stabilized version of this intrinsic is /// [`std::ptr::read_volatile`](../../std/ptr/fn.read_volatile.html). pub fn volatile_load<T>(src: *const T) -> T; /// Perform a volatile store to the `dst` pointer. /// The stabilized version of this intrinsic is /// [`std::ptr::write_volatile`](../../std/ptr/fn.write_volatile.html). pub fn volatile_store<T>(dst: *mut T, val: T); /// Returns the square root of an `f32` pub fn sqrtf32(x: f32) -> f32; /// Returns the square root of an `f64` pub fn sqrtf64(x: f64) -> f64; /// Raises an `f32` to an integer power. pub fn powif32(a: f32, x: i32) -> f32; /// Raises an `f64` to an integer power. pub fn powif64(a: f64, x: i32) -> f64; /// Returns the sine of an `f32`. pub fn sinf32(x: f32) -> f32; /// Returns the sine of an `f64`. pub fn sinf64(x: f64) -> f64; /// Returns the cosine of an `f32`. pub fn cosf32(x: f32) -> f32; /// Returns the cosine of an `f64`. pub fn cosf64(x: f64) -> f64; /// Raises an `f32` to an `f32` power. pub fn powf32(a: f32, x: f32) -> f32; /// Raises an `f64` to an `f64` power. pub fn powf64(a: f64, x: f64) -> f64; /// Returns the exponential of an `f32`. pub fn expf32(x: f32) -> f32; /// Returns the exponential of an `f64`. pub fn expf64(x: f64) -> f64; /// Returns 2 raised to the power of an `f32`. pub fn exp2f32(x: f32) -> f32; /// Returns 2 raised to the power of an `f64`. pub fn exp2f64(x: f64) -> f64; /// Returns the natural logarithm of an `f32`. pub fn logf32(x: f32) -> f32; /// Returns the natural logarithm of an `f64`. pub fn logf64(x: f64) -> f64; /// Returns the base 10 logarithm of an `f32`. pub fn log10f32(x: f32) -> f32; /// Returns the base 10 logarithm of an `f64`. pub fn log10f64(x: f64) -> f64; /// Returns the base 2 logarithm of an `f32`. pub fn log2f32(x: f32) -> f32; /// Returns the base 2 logarithm of an `f64`. pub fn log2f64(x: f64) -> f64; /// Returns `a * b + c` for `f32` values. pub fn fmaf32(a: f32, b: f32, c: f32) -> f32; /// Returns `a * b + c` for `f64` values. pub fn fmaf64(a: f64, b: f64, c: f64) -> f64; /// Returns the absolute value of an `f32`. pub fn fabsf32(x: f32) -> f32; /// Returns the absolute value of an `f64`. pub fn fabsf64(x: f64) -> f64; /// Copies the sign from `y` to `x` for `f32` values. pub fn copysignf32(x: f32, y: f32) -> f32; /// Copies the sign from `y` to `x` for `f64` values. pub fn copysignf64(x: f64, y: f64) -> f64; /// Returns the largest integer less than or equal to an `f32`. pub fn floorf32(x: f32) -> f32; /// Returns the largest integer less than or equal to an `f64`. pub fn floorf64(x: f64) -> f64; /// Returns the smallest integer greater than or equal to an `f32`. pub fn ceilf32(x: f32) -> f32; /// Returns the smallest integer greater than or equal to an `f64`. pub fn ceilf64(x: f64) -> f64; /// Returns the integer part of an `f32`. pub fn truncf32(x: f32) -> f32; /// Returns the integer part of an `f64`. pub fn truncf64(x: f64) -> f64; /// Returns the nearest integer to an `f32`. May raise an inexact floating-point exception /// if the argument is not an integer. pub fn rintf32(x: f32) -> f32; /// Returns the nearest integer to an `f64`. May raise an inexact floating-point exception /// if the argument is not an integer. pub fn rintf64(x: f64) -> f64; /// Returns the nearest integer to an `f32`. pub fn nearbyintf32(x: f32) -> f32; /// Returns the nearest integer to an `f64`. pub fn nearbyintf64(x: f64) -> f64; /// Returns the nearest integer to an `f32`. Rounds half-way cases away from zero. pub fn roundf32(x: f32) -> f32; /// Returns the nearest integer to an `f64`. Rounds half-way cases away from zero. pub fn roundf64(x: f64) -> f64; /// Float addition that allows optimizations based on algebraic rules. /// May assume inputs are finite. pub fn fadd_fast<T>(a: T, b: T) -> T; /// Float subtraction that allows optimizations based on algebraic rules. /// May assume inputs are finite. pub fn fsub_fast<T>(a: T, b: T) -> T; /// Float multiplication that allows optimizations based on algebraic rules. /// May assume inputs are finite. pub fn fmul_fast<T>(a: T, b: T) -> T; /// Float division that allows optimizations based on algebraic rules. /// May assume inputs are finite. pub fn fdiv_fast<T>(a: T, b: T) -> T; /// Float remainder that allows optimizations based on algebraic rules. /// May assume inputs are finite. pub fn frem_fast<T>(a: T, b: T) -> T; /// Returns the number of bits set in an integer type `T` pub fn ctpop<T>(x: T) -> T; /// Returns the number of leading unset bits (zeroes) in an integer type `T`. /// /// # Examples /// /// ``` /// #![feature(core_intrinsics)] /// /// use std::intrinsics::ctlz; /// /// let x = 0b0001_1100_u8; /// let num_leading = unsafe { ctlz(x) }; /// assert_eq!(num_leading, 3); /// ``` /// /// An `x` with value `0` will return the bit width of `T`. /// /// ``` /// #![feature(core_intrinsics)] /// /// use std::intrinsics::ctlz; /// /// let x = 0u16; /// let num_leading = unsafe { ctlz(x) }; /// assert_eq!(num_leading, 16); /// ``` pub fn ctlz<T>(x: T) -> T; /// Like `ctlz`, but extra-unsafe as it returns `undef` when /// given an `x` with value `0`. /// /// # Examples /// /// ``` /// #![feature(core_intrinsics)] /// /// use std::intrinsics::ctlz_nonzero; /// /// let x = 0b0001_1100_u8; /// let num_leading = unsafe { ctlz_nonzero(x) }; /// assert_eq!(num_leading, 3); /// ``` pub fn ctlz_nonzero<T>(x: T) -> T; /// Returns the number of trailing unset bits (zeroes) in an integer type `T`. /// /// # Examples /// /// ``` /// #![feature(core_intrinsics)] /// /// use std::intrinsics::cttz; /// /// let x = 0b0011_1000_u8; /// let num_trailing = unsafe { cttz(x) }; /// assert_eq!(num_trailing, 3); /// ``` /// /// An `x` with value `0` will return the bit width of `T`: /// /// ``` /// #![feature(core_intrinsics)] /// /// use std::intrinsics::cttz; /// /// let x = 0u16; /// let num_trailing = unsafe { cttz(x) }; /// assert_eq!(num_trailing, 16); /// ``` pub fn cttz<T>(x: T) -> T; /// Like `cttz`, but extra-unsafe as it returns `undef` when /// given an `x` with value `0`. /// /// # Examples /// /// ``` /// #![feature(core_intrinsics)] /// /// use std::intrinsics::cttz_nonzero; /// /// let x = 0b0011_1000_u8; /// let num_trailing = unsafe { cttz_nonzero(x) }; /// assert_eq!(num_trailing, 3); /// ``` pub fn cttz_nonzero<T>(x: T) -> T; /// Reverses the bytes in an integer type `T`. pub fn bswap<T>(x: T) -> T; /// Reverses the bits in an integer type `T`. pub fn bitreverse<T>(x: T) -> T; /// Performs checked integer addition. /// The stabilized versions of this intrinsic are available on the integer /// primitives via the `overflowing_add` method. For example, /// [`std::u32::overflowing_add`](../../std/primitive.u32.html#method.overflowing_add) pub fn add_with_overflow<T>(x: T, y: T) -> (T, bool); /// Performs checked integer subtraction /// The stabilized versions of this intrinsic are available on the integer /// primitives via the `overflowing_sub` method. For example, /// [`std::u32::overflowing_sub`](../../std/primitive.u32.html#method.overflowing_sub) pub fn sub_with_overflow<T>(x: T, y: T) -> (T, bool); /// Performs checked integer multiplication /// The stabilized versions of this intrinsic are available on the integer /// primitives via the `overflowing_mul` method. For example, /// [`std::u32::overflowing_mul`](../../std/primitive.u32.html#method.overflowing_mul) pub fn mul_with_overflow<T>(x: T, y: T) -> (T, bool); /// Performs an exact division, resulting in undefined behavior where /// `x % y != 0` or `y == 0` or `x == T::min_value() && y == -1` pub fn exact_div<T>(x: T, y: T) -> T; /// Performs an unchecked division, resulting in undefined behavior /// where y = 0 or x = `T::min_value()` and y = -1 pub fn unchecked_div<T>(x: T, y: T) -> T; /// Returns the remainder of an unchecked division, resulting in /// undefined behavior where y = 0 or x = `T::min_value()` and y = -1 pub fn unchecked_rem<T>(x: T, y: T) -> T; /// Performs an unchecked left shift, resulting in undefined behavior when /// y < 0 or y >= N, where N is the width of T in bits. pub fn unchecked_shl<T>(x: T, y: T) -> T; /// Performs an unchecked right shift, resulting in undefined behavior when /// y < 0 or y >= N, where N is the width of T in bits. pub fn unchecked_shr<T>(x: T, y: T) -> T; /// Returns (a + b) mod 2<sup>N</sup>, where N is the width of T in bits. /// The stabilized versions of this intrinsic are available on the integer /// primitives via the `wrapping_add` method. For example, /// [`std::u32::wrapping_add`](../../std/primitive.u32.html#method.wrapping_add) pub fn overflowing_add<T>(a: T, b: T) -> T; /// Returns (a - b) mod 2<sup>N</sup>, where N is the width of T in bits. /// The stabilized versions of this intrinsic are available on the integer /// primitives via the `wrapping_sub` method. For example, /// [`std::u32::wrapping_sub`](../../std/primitive.u32.html#method.wrapping_sub) pub fn overflowing_sub<T>(a: T, b: T) -> T; /// Returns (a * b) mod 2<sup>N</sup>, where N is the width of T in bits. /// The stabilized versions of this intrinsic are available on the integer /// primitives via the `wrapping_mul` method. For example, /// [`std::u32::wrapping_mul`](../../std/primitive.u32.html#method.wrapping_mul) pub fn overflowing_mul<T>(a: T, b: T) -> T; /// Returns the value of the discriminant for the variant in 'v', /// cast to a `u64`; if `T` has no discriminant, returns 0. pub fn discriminant_value<T>(v: &T) -> u64; /// Rust's "try catch" construct which invokes the function pointer `f` with /// the data pointer `data`. /// /// The third pointer is a target-specific data pointer which is filled in /// with the specifics of the exception that occurred. For examples on Unix /// platforms this is a `*mut *mut T` which is filled in by the compiler and /// on MSVC it's `*mut [usize; 2]`. For more information see the compiler's /// source as well as std's catch implementation. pub fn try(f: fn(*mut u8), data: *mut u8, local_ptr: *mut u8) -> i32; #[cfg(stage0)] /// docs my friends, its friday! pub fn align_offset(ptr: *const (), align: usize) -> usize; /// Emits a `!nontemporal` store according to LLVM (see their docs). /// Probably will never become stable. pub fn nontemporal_store<T>(ptr: *mut T, val: T); }