1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! A pointer type for heap allocation.
//!
//! `Box<T>`, casually referred to as a 'box', provides the simplest form of
//! heap allocation in Rust. Boxes provide ownership for this allocation, and
//! drop their contents when they go out of scope.
//!
//! # Examples
//!
//! Creating a box:
//!
//! ```
//! let x = Box::new(5);
//! ```
//!
//! Creating a recursive data structure:
//!
//! ```
//! #[derive(Debug)]
//! enum List<T> {
//!     Cons(T, Box<List<T>>),
//!     Nil,
//! }
//!
//! fn main() {
//!     let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
//!     println!("{:?}", list);
//! }
//! ```
//!
//! This will print `Cons(1, Cons(2, Nil))`.
//!
//! Recursive structures must be boxed, because if the definition of `Cons`
//! looked like this:
//!
//! ```compile_fail,E0072
//! # enum List<T> {
//! Cons(T, List<T>),
//! # }
//! ```
//!
//! It wouldn't work. This is because the size of a `List` depends on how many
//! elements are in the list, and so we don't know how much memory to allocate
//! for a `Cons`. By introducing a `Box`, which has a defined size, we know how
//! big `Cons` needs to be.

#![stable(feature = "rust1", since = "1.0.0")]

use core::any::Any;
use core::borrow;
use core::cmp::Ordering;
use core::fmt;
use core::future::Future;
use core::hash::{Hash, Hasher};
use core::iter::FusedIterator;
use core::marker::{Unpin, Unsize};
use core::mem::{self, PinMut};
use core::ops::{CoerceUnsized, Deref, DerefMut, Generator, GeneratorState};
use core::ptr::{self, NonNull, Unique};
use core::task::{Context, Poll, UnsafeTask, TaskObj};
use core::convert::From;

use raw_vec::RawVec;
use str::from_boxed_utf8_unchecked;

/// A pointer type for heap allocation.
///
/// See the [module-level documentation](../../std/boxed/index.html) for more.
#[lang = "owned_box"]
#[fundamental]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Box<T: ?Sized>(Unique<T>);

impl<T> Box<T> {
    /// Allocates memory on the heap and then places `x` into it.
    ///
    /// This doesn't actually allocate if `T` is zero-sized.
    ///
    /// # Examples
    ///
    /// ```
    /// let five = Box::new(5);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline(always)]
    pub fn new(x: T) -> Box<T> {
        box x
    }
}

impl<T: ?Sized> Box<T> {
    /// Constructs a box from a raw pointer.
    ///
    /// After calling this function, the raw pointer is owned by the
    /// resulting `Box`. Specifically, the `Box` destructor will call
    /// the destructor of `T` and free the allocated memory. Since the
    /// way `Box` allocates and releases memory is unspecified, the
    /// only valid pointer to pass to this function is the one taken
    /// from another `Box` via the [`Box::into_raw`] function.
    ///
    /// This function is unsafe because improper use may lead to
    /// memory problems. For example, a double-free may occur if the
    /// function is called twice on the same raw pointer.
    ///
    /// [`Box::into_raw`]: struct.Box.html#method.into_raw
    ///
    /// # Examples
    ///
    /// ```
    /// let x = Box::new(5);
    /// let ptr = Box::into_raw(x);
    /// let x = unsafe { Box::from_raw(ptr) };
    /// ```
    #[stable(feature = "box_raw", since = "1.4.0")]
    #[inline]
    pub unsafe fn from_raw(raw: *mut T) -> Self {
        Box(Unique::new_unchecked(raw))
    }

    /// Consumes the `Box`, returning the wrapped raw pointer.
    ///
    /// After calling this function, the caller is responsible for the
    /// memory previously managed by the `Box`. In particular, the
    /// caller should properly destroy `T` and release the memory. The
    /// proper way to do so is to convert the raw pointer back into a
    /// `Box` with the [`Box::from_raw`] function.
    ///
    /// Note: this is an associated function, which means that you have
    /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
    /// is so that there is no conflict with a method on the inner type.
    ///
    /// [`Box::from_raw`]: struct.Box.html#method.from_raw
    ///
    /// # Examples
    ///
    /// ```
    /// let x = Box::new(5);
    /// let ptr = Box::into_raw(x);
    /// ```
    #[stable(feature = "box_raw", since = "1.4.0")]
    #[inline]
    pub fn into_raw(b: Box<T>) -> *mut T {
        Box::into_raw_non_null(b).as_ptr()
    }

    /// Consumes the `Box`, returning the wrapped pointer as `NonNull<T>`.
    ///
    /// After calling this function, the caller is responsible for the
    /// memory previously managed by the `Box`. In particular, the
    /// caller should properly destroy `T` and release the memory. The
    /// proper way to do so is to convert the `NonNull<T>` pointer
    /// into a raw pointer and back into a `Box` with the [`Box::from_raw`]
    /// function.
    ///
    /// Note: this is an associated function, which means that you have
    /// to call it as `Box::into_raw_non_null(b)`
    /// instead of `b.into_raw_non_null()`. This
    /// is so that there is no conflict with a method on the inner type.
    ///
    /// [`Box::from_raw`]: struct.Box.html#method.from_raw
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(box_into_raw_non_null)]
    ///
    /// fn main() {
    ///     let x = Box::new(5);
    ///     let ptr = Box::into_raw_non_null(x);
    /// }
    /// ```
    #[unstable(feature = "box_into_raw_non_null", issue = "47336")]
    #[inline]
    pub fn into_raw_non_null(b: Box<T>) -> NonNull<T> {
        Box::into_unique(b).into()
    }

    #[unstable(feature = "ptr_internals", issue = "0", reason = "use into_raw_non_null instead")]
    #[inline]
    #[doc(hidden)]
    pub fn into_unique(b: Box<T>) -> Unique<T> {
        let unique = b.0;
        mem::forget(b);
        unique
    }

    /// Consumes and leaks the `Box`, returning a mutable reference,
    /// `&'a mut T`. Here, the lifetime `'a` may be chosen to be `'static`.
    ///
    /// This function is mainly useful for data that lives for the remainder of
    /// the program's life. Dropping the returned reference will cause a memory
    /// leak. If this is not acceptable, the reference should first be wrapped
    /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can
    /// then be dropped which will properly destroy `T` and release the
    /// allocated memory.
    ///
    /// Note: this is an associated function, which means that you have
    /// to call it as `Box::leak(b)` instead of `b.leak()`. This
    /// is so that there is no conflict with a method on the inner type.
    ///
    /// [`Box::from_raw`]: struct.Box.html#method.from_raw
    ///
    /// # Examples
    ///
    /// Simple usage:
    ///
    /// ```
    /// fn main() {
    ///     let x = Box::new(41);
    ///     let static_ref: &'static mut usize = Box::leak(x);
    ///     *static_ref += 1;
    ///     assert_eq!(*static_ref, 42);
    /// }
    /// ```
    ///
    /// Unsized data:
    ///
    /// ```
    /// fn main() {
    ///     let x = vec![1, 2, 3].into_boxed_slice();
    ///     let static_ref = Box::leak(x);
    ///     static_ref[0] = 4;
    ///     assert_eq!(*static_ref, [4, 2, 3]);
    /// }
    /// ```
    #[stable(feature = "box_leak", since = "1.26.0")]
    #[inline]
    pub fn leak<'a>(b: Box<T>) -> &'a mut T
    where
        T: 'a // Technically not needed, but kept to be explicit.
    {
        unsafe { &mut *Box::into_raw(b) }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<#[may_dangle] T: ?Sized> Drop for Box<T> {
    fn drop(&mut self) {
        // FIXME: Do nothing, drop is currently performed by compiler.
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Default> Default for Box<T> {
    /// Creates a `Box<T>`, with the `Default` value for T.
    fn default() -> Box<T> {
        box Default::default()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Default for Box<[T]> {
    fn default() -> Box<[T]> {
        Box::<[T; 0]>::new([])
    }
}

#[stable(feature = "default_box_extra", since = "1.17.0")]
impl Default for Box<str> {
    fn default() -> Box<str> {
        unsafe { from_boxed_utf8_unchecked(Default::default()) }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Clone> Clone for Box<T> {
    /// Returns a new box with a `clone()` of this box's contents.
    ///
    /// # Examples
    ///
    /// ```
    /// let x = Box::new(5);
    /// let y = x.clone();
    /// ```
    #[rustfmt_skip]
    #[inline]
    fn clone(&self) -> Box<T> {
        box { (**self).clone() }
    }
    /// Copies `source`'s contents into `self` without creating a new allocation.
    ///
    /// # Examples
    ///
    /// ```
    /// let x = Box::new(5);
    /// let mut y = Box::new(10);
    ///
    /// y.clone_from(&x);
    ///
    /// assert_eq!(*y, 5);
    /// ```
    #[inline]
    fn clone_from(&mut self, source: &Box<T>) {
        (**self).clone_from(&(**source));
    }
}


#[stable(feature = "box_slice_clone", since = "1.3.0")]
impl Clone for Box<str> {
    fn clone(&self) -> Self {
        let len = self.len();
        let buf = RawVec::with_capacity(len);
        unsafe {
            ptr::copy_nonoverlapping(self.as_ptr(), buf.ptr(), len);
            from_boxed_utf8_unchecked(buf.into_box())
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialEq> PartialEq for Box<T> {
    #[inline]
    fn eq(&self, other: &Box<T>) -> bool {
        PartialEq::eq(&**self, &**other)
    }
    #[inline]
    fn ne(&self, other: &Box<T>) -> bool {
        PartialEq::ne(&**self, &**other)
    }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialOrd> PartialOrd for Box<T> {
    #[inline]
    fn partial_cmp(&self, other: &Box<T>) -> Option<Ordering> {
        PartialOrd::partial_cmp(&**self, &**other)
    }
    #[inline]
    fn lt(&self, other: &Box<T>) -> bool {
        PartialOrd::lt(&**self, &**other)
    }
    #[inline]
    fn le(&self, other: &Box<T>) -> bool {
        PartialOrd::le(&**self, &**other)
    }
    #[inline]
    fn ge(&self, other: &Box<T>) -> bool {
        PartialOrd::ge(&**self, &**other)
    }
    #[inline]
    fn gt(&self, other: &Box<T>) -> bool {
        PartialOrd::gt(&**self, &**other)
    }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Ord> Ord for Box<T> {
    #[inline]
    fn cmp(&self, other: &Box<T>) -> Ordering {
        Ord::cmp(&**self, &**other)
    }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Eq> Eq for Box<T> {}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Hash> Hash for Box<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        (**self).hash(state);
    }
}

#[stable(feature = "indirect_hasher_impl", since = "1.22.0")]
impl<T: ?Sized + Hasher> Hasher for Box<T> {
    fn finish(&self) -> u64 {
        (**self).finish()
    }
    fn write(&mut self, bytes: &[u8]) {
        (**self).write(bytes)
    }
    fn write_u8(&mut self, i: u8) {
        (**self).write_u8(i)
    }
    fn write_u16(&mut self, i: u16) {
        (**self).write_u16(i)
    }
    fn write_u32(&mut self, i: u32) {
        (**self).write_u32(i)
    }
    fn write_u64(&mut self, i: u64) {
        (**self).write_u64(i)
    }
    fn write_u128(&mut self, i: u128) {
        (**self).write_u128(i)
    }
    fn write_usize(&mut self, i: usize) {
        (**self).write_usize(i)
    }
    fn write_i8(&mut self, i: i8) {
        (**self).write_i8(i)
    }
    fn write_i16(&mut self, i: i16) {
        (**self).write_i16(i)
    }
    fn write_i32(&mut self, i: i32) {
        (**self).write_i32(i)
    }
    fn write_i64(&mut self, i: i64) {
        (**self).write_i64(i)
    }
    fn write_i128(&mut self, i: i128) {
        (**self).write_i128(i)
    }
    fn write_isize(&mut self, i: isize) {
        (**self).write_isize(i)
    }
}

#[stable(feature = "from_for_ptrs", since = "1.6.0")]
impl<T> From<T> for Box<T> {
    fn from(t: T) -> Self {
        Box::new(t)
    }
}

#[stable(feature = "box_from_slice", since = "1.17.0")]
impl<'a, T: Copy> From<&'a [T]> for Box<[T]> {
    fn from(slice: &'a [T]) -> Box<[T]> {
        let mut boxed = unsafe { RawVec::with_capacity(slice.len()).into_box() };
        boxed.copy_from_slice(slice);
        boxed
    }
}

#[stable(feature = "box_from_slice", since = "1.17.0")]
impl<'a> From<&'a str> for Box<str> {
    #[inline]
    fn from(s: &'a str) -> Box<str> {
        unsafe { from_boxed_utf8_unchecked(Box::from(s.as_bytes())) }
    }
}

#[stable(feature = "boxed_str_conv", since = "1.19.0")]
impl From<Box<str>> for Box<[u8]> {
    #[inline]
    fn from(s: Box<str>) -> Self {
        unsafe { Box::from_raw(Box::into_raw(s) as *mut [u8]) }
    }
}

impl Box<Any> {
    #[inline]
    #[stable(feature = "rust1", since = "1.0.0")]
    /// Attempt to downcast the box to a concrete type.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::any::Any;
    ///
    /// fn print_if_string(value: Box<Any>) {
    ///     if let Ok(string) = value.downcast::<String>() {
    ///         println!("String ({}): {}", string.len(), string);
    ///     }
    /// }
    ///
    /// fn main() {
    ///     let my_string = "Hello World".to_string();
    ///     print_if_string(Box::new(my_string));
    ///     print_if_string(Box::new(0i8));
    /// }
    /// ```
    pub fn downcast<T: Any>(self) -> Result<Box<T>, Box<Any>> {
        if self.is::<T>() {
            unsafe {
                let raw: *mut Any = Box::into_raw(self);
                Ok(Box::from_raw(raw as *mut T))
            }
        } else {
            Err(self)
        }
    }
}

impl Box<Any + Send> {
    #[inline]
    #[stable(feature = "rust1", since = "1.0.0")]
    /// Attempt to downcast the box to a concrete type.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::any::Any;
    ///
    /// fn print_if_string(value: Box<Any + Send>) {
    ///     if let Ok(string) = value.downcast::<String>() {
    ///         println!("String ({}): {}", string.len(), string);
    ///     }
    /// }
    ///
    /// fn main() {
    ///     let my_string = "Hello World".to_string();
    ///     print_if_string(Box::new(my_string));
    ///     print_if_string(Box::new(0i8));
    /// }
    /// ```
    pub fn downcast<T: Any>(self) -> Result<Box<T>, Box<Any + Send>> {
        <Box<Any>>::downcast(self).map_err(|s| unsafe {
            // reapply the Send marker
            Box::from_raw(Box::into_raw(s) as *mut (Any + Send))
        })
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Display + ?Sized> fmt::Display for Box<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Debug + ?Sized> fmt::Debug for Box<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> fmt::Pointer for Box<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        // It's not possible to extract the inner Uniq directly from the Box,
        // instead we cast it to a *const which aliases the Unique
        let ptr: *const T = &**self;
        fmt::Pointer::fmt(&ptr, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Deref for Box<T> {
    type Target = T;

    fn deref(&self) -> &T {
        &**self
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> DerefMut for Box<T> {
    fn deref_mut(&mut self) -> &mut T {
        &mut **self
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<I: Iterator + ?Sized> Iterator for Box<I> {
    type Item = I::Item;
    fn next(&mut self) -> Option<I::Item> {
        (**self).next()
    }
    fn size_hint(&self) -> (usize, Option<usize>) {
        (**self).size_hint()
    }
    fn nth(&mut self, n: usize) -> Option<I::Item> {
        (**self).nth(n)
    }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: DoubleEndedIterator + ?Sized> DoubleEndedIterator for Box<I> {
    fn next_back(&mut self) -> Option<I::Item> {
        (**self).next_back()
    }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: ExactSizeIterator + ?Sized> ExactSizeIterator for Box<I> {
    fn len(&self) -> usize {
        (**self).len()
    }
    fn is_empty(&self) -> bool {
        (**self).is_empty()
    }
}

#[stable(feature = "fused", since = "1.26.0")]
impl<I: FusedIterator + ?Sized> FusedIterator for Box<I> {}


/// `FnBox` is a version of the `FnOnce` intended for use with boxed
/// closure objects. The idea is that where one would normally store a
/// `Box<FnOnce()>` in a data structure, you should use
/// `Box<FnBox()>`. The two traits behave essentially the same, except
/// that a `FnBox` closure can only be called if it is boxed. (Note
/// that `FnBox` may be deprecated in the future if `Box<FnOnce()>`
/// closures become directly usable.)
///
/// # Examples
///
/// Here is a snippet of code which creates a hashmap full of boxed
/// once closures and then removes them one by one, calling each
/// closure as it is removed. Note that the type of the closures
/// stored in the map is `Box<FnBox() -> i32>` and not `Box<FnOnce()
/// -> i32>`.
///
/// ```
/// #![feature(fnbox)]
///
/// use std::boxed::FnBox;
/// use std::collections::HashMap;
///
/// fn make_map() -> HashMap<i32, Box<FnBox() -> i32>> {
///     let mut map: HashMap<i32, Box<FnBox() -> i32>> = HashMap::new();
///     map.insert(1, Box::new(|| 22));
///     map.insert(2, Box::new(|| 44));
///     map
/// }
///
/// fn main() {
///     let mut map = make_map();
///     for i in &[1, 2] {
///         let f = map.remove(&i).unwrap();
///         assert_eq!(f(), i * 22);
///     }
/// }
/// ```
#[rustc_paren_sugar]
#[unstable(feature = "fnbox",
           reason = "will be deprecated if and when `Box<FnOnce>` becomes usable", issue = "28796")]
pub trait FnBox<A> {
    type Output;

    fn call_box(self: Box<Self>, args: A) -> Self::Output;
}

#[unstable(feature = "fnbox",
           reason = "will be deprecated if and when `Box<FnOnce>` becomes usable", issue = "28796")]
impl<A, F> FnBox<A> for F
    where F: FnOnce<A>
{
    type Output = F::Output;

    fn call_box(self: Box<F>, args: A) -> F::Output {
        self.call_once(args)
    }
}

#[unstable(feature = "fnbox",
           reason = "will be deprecated if and when `Box<FnOnce>` becomes usable", issue = "28796")]
impl<'a, A, R> FnOnce<A> for Box<FnBox<A, Output = R> + 'a> {
    type Output = R;

    extern "rust-call" fn call_once(self, args: A) -> R {
        self.call_box(args)
    }
}

#[unstable(feature = "fnbox",
           reason = "will be deprecated if and when `Box<FnOnce>` becomes usable", issue = "28796")]
impl<'a, A, R> FnOnce<A> for Box<FnBox<A, Output = R> + Send + 'a> {
    type Output = R;

    extern "rust-call" fn call_once(self, args: A) -> R {
        self.call_box(args)
    }
}

#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Box<U>> for Box<T> {}

#[stable(feature = "box_slice_clone", since = "1.3.0")]
impl<T: Clone> Clone for Box<[T]> {
    fn clone(&self) -> Self {
        let mut new = BoxBuilder {
            data: RawVec::with_capacity(self.len()),
            len: 0,
        };

        let mut target = new.data.ptr();

        for item in self.iter() {
            unsafe {
                ptr::write(target, item.clone());
                target = target.offset(1);
            };

            new.len += 1;
        }

        return unsafe { new.into_box() };

        // Helper type for responding to panics correctly.
        struct BoxBuilder<T> {
            data: RawVec<T>,
            len: usize,
        }

        impl<T> BoxBuilder<T> {
            unsafe fn into_box(self) -> Box<[T]> {
                let raw = ptr::read(&self.data);
                mem::forget(self);
                raw.into_box()
            }
        }

        impl<T> Drop for BoxBuilder<T> {
            fn drop(&mut self) {
                let mut data = self.data.ptr();
                let max = unsafe { data.offset(self.len as isize) };

                while data != max {
                    unsafe {
                        ptr::read(data);
                        data = data.offset(1);
                    }
                }
            }
        }
    }
}

#[stable(feature = "box_borrow", since = "1.1.0")]
impl<T: ?Sized> borrow::Borrow<T> for Box<T> {
    fn borrow(&self) -> &T {
        &**self
    }
}

#[stable(feature = "box_borrow", since = "1.1.0")]
impl<T: ?Sized> borrow::BorrowMut<T> for Box<T> {
    fn borrow_mut(&mut self) -> &mut T {
        &mut **self
    }
}

#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
impl<T: ?Sized> AsRef<T> for Box<T> {
    fn as_ref(&self) -> &T {
        &**self
    }
}

#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
impl<T: ?Sized> AsMut<T> for Box<T> {
    fn as_mut(&mut self) -> &mut T {
        &mut **self
    }
}

#[unstable(feature = "generator_trait", issue = "43122")]
impl<T> Generator for Box<T>
    where T: Generator + ?Sized
{
    type Yield = T::Yield;
    type Return = T::Return;
    unsafe fn resume(&mut self) -> GeneratorState<Self::Yield, Self::Return> {
        (**self).resume()
    }
}

/// A pinned, heap allocated reference.
#[unstable(feature = "pin", issue = "49150")]
#[fundamental]
#[repr(transparent)]
pub struct PinBox<T: ?Sized> {
    inner: Box<T>,
}

#[unstable(feature = "pin", issue = "49150")]
impl<T> PinBox<T> {
    /// Allocate memory on the heap, move the data into it and pin it.
    #[unstable(feature = "pin", issue = "49150")]
    pub fn new(data: T) -> PinBox<T> {
        PinBox { inner: Box::new(data) }
    }
}

#[unstable(feature = "pin", issue = "49150")]
impl<T: ?Sized> PinBox<T> {
    /// Get a pinned reference to the data in this PinBox.
    #[inline]
    pub fn as_pin_mut<'a>(&'a mut self) -> PinMut<'a, T> {
        unsafe { PinMut::new_unchecked(&mut *self.inner) }
    }

    /// Constructs a `PinBox` from a raw pointer.
    ///
    /// After calling this function, the raw pointer is owned by the
    /// resulting `PinBox`. Specifically, the `PinBox` destructor will call
    /// the destructor of `T` and free the allocated memory. Since the
    /// way `PinBox` allocates and releases memory is unspecified, the
    /// only valid pointer to pass to this function is the one taken
    /// from another `PinBox` via the [`PinBox::into_raw`] function.
    ///
    /// This function is unsafe because improper use may lead to
    /// memory problems. For example, a double-free may occur if the
    /// function is called twice on the same raw pointer.
    ///
    /// [`PinBox::into_raw`]: struct.PinBox.html#method.into_raw
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(pin)]
    /// use std::boxed::PinBox;
    /// let x = PinBox::new(5);
    /// let ptr = PinBox::into_raw(x);
    /// let x = unsafe { PinBox::from_raw(ptr) };
    /// ```
    #[inline]
    pub unsafe fn from_raw(raw: *mut T) -> Self {
        PinBox { inner: Box::from_raw(raw) }
    }

    /// Consumes the `PinBox`, returning the wrapped raw pointer.
    ///
    /// After calling this function, the caller is responsible for the
    /// memory previously managed by the `PinBox`. In particular, the
    /// caller should properly destroy `T` and release the memory. The
    /// proper way to do so is to convert the raw pointer back into a
    /// `PinBox` with the [`PinBox::from_raw`] function.
    ///
    /// Note: this is an associated function, which means that you have
    /// to call it as `PinBox::into_raw(b)` instead of `b.into_raw()`. This
    /// is so that there is no conflict with a method on the inner type.
    ///
    /// [`PinBox::from_raw`]: struct.PinBox.html#method.from_raw
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(pin)]
    /// use std::boxed::PinBox;
    /// let x = PinBox::new(5);
    /// let ptr = PinBox::into_raw(x);
    /// ```
    #[inline]
    pub fn into_raw(b: PinBox<T>) -> *mut T {
        Box::into_raw(b.inner)
    }

    /// Get a mutable reference to the data inside this PinBox.
    ///
    /// This function is unsafe. Users must guarantee that the data is never
    /// moved out of this reference.
    #[inline]
    pub unsafe fn get_mut<'a>(this: &'a mut PinBox<T>) -> &'a mut T {
        &mut *this.inner
    }

    /// Convert this PinBox into an unpinned Box.
    ///
    /// This function is unsafe. Users must guarantee that the data is never
    /// moved out of the box.
    #[inline]
    pub unsafe fn unpin(this: PinBox<T>) -> Box<T> {
        this.inner
    }
}

#[unstable(feature = "pin", issue = "49150")]
impl<T: ?Sized> From<Box<T>> for PinBox<T> {
    fn from(boxed: Box<T>) -> PinBox<T> {
        PinBox { inner: boxed }
    }
}

#[unstable(feature = "pin", issue = "49150")]
impl<T: Unpin + ?Sized> From<PinBox<T>> for Box<T> {
    fn from(pinned: PinBox<T>) -> Box<T> {
        pinned.inner
    }
}

#[unstable(feature = "pin", issue = "49150")]
impl<T: ?Sized> Deref for PinBox<T> {
    type Target = T;

    fn deref(&self) -> &T {
        &*self.inner
    }
}

#[unstable(feature = "pin", issue = "49150")]
impl<T: Unpin + ?Sized> DerefMut for PinBox<T> {
    fn deref_mut(&mut self) -> &mut T {
        &mut *self.inner
    }
}

#[unstable(feature = "pin", issue = "49150")]
impl<T: fmt::Display + ?Sized> fmt::Display for PinBox<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&*self.inner, f)
    }
}

#[unstable(feature = "pin", issue = "49150")]
impl<T: fmt::Debug + ?Sized> fmt::Debug for PinBox<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&*self.inner, f)
    }
}

#[unstable(feature = "pin", issue = "49150")]
impl<T: ?Sized> fmt::Pointer for PinBox<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        // It's not possible to extract the inner Uniq directly from the Box,
        // instead we cast it to a *const which aliases the Unique
        let ptr: *const T = &*self.inner;
        fmt::Pointer::fmt(&ptr, f)
    }
}

#[unstable(feature = "pin", issue = "49150")]
impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<PinBox<U>> for PinBox<T> {}

#[unstable(feature = "pin", issue = "49150")]
impl<T: ?Sized> Unpin for PinBox<T> {}

#[unstable(feature = "futures_api", issue = "50547")]
impl<'a, F: ?Sized + Future + Unpin> Future for Box<F> {
    type Output = F::Output;

    fn poll(mut self: PinMut<Self>, cx: &mut Context) -> Poll<Self::Output> {
        PinMut::new(&mut **self).poll(cx)
    }
}

#[unstable(feature = "futures_api", issue = "50547")]
impl<'a, F: ?Sized + Future> Future for PinBox<F> {
    type Output = F::Output;

    fn poll(mut self: PinMut<Self>, cx: &mut Context) -> Poll<Self::Output> {
        self.as_pin_mut().poll(cx)
    }
}

#[unstable(feature = "futures_api", issue = "50547")]
unsafe impl<F: Future<Output = ()> + Send + 'static> UnsafeTask for PinBox<F> {
    fn into_raw(self) -> *mut () {
        PinBox::into_raw(self) as *mut ()
    }

    unsafe fn poll(task: *mut (), cx: &mut Context) -> Poll<()> {
        let ptr = task as *mut F;
        let pin: PinMut<F> = PinMut::new_unchecked(&mut *ptr);
        pin.poll(cx)
    }

    unsafe fn drop(task: *mut ()) {
        drop(PinBox::from_raw(task as *mut F))
    }
}

#[unstable(feature = "futures_api", issue = "50547")]
impl<F: Future<Output = ()> + Send + 'static> From<PinBox<F>> for TaskObj {
    fn from(boxed: PinBox<F>) -> Self {
        TaskObj::new(boxed)
    }
}

#[unstable(feature = "futures_api", issue = "50547")]
impl<F: Future<Output = ()> + Send + 'static> From<Box<F>> for TaskObj {
    fn from(boxed: Box<F>) -> Self {
        TaskObj::new(PinBox::from(boxed))
    }
}