1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
// Copyright 2013-2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use ops::{Mul, Add, Try};
use num::Wrapping;

use super::LoopState;

/// Conversion from an `Iterator`.
///
/// By implementing `FromIterator` for a type, you define how it will be
/// created from an iterator. This is common for types which describe a
/// collection of some kind.
///
/// `FromIterator`'s [`from_iter`] is rarely called explicitly, and is instead
/// used through [`Iterator`]'s [`collect`] method. See [`collect`]'s
/// documentation for more examples.
///
/// [`from_iter`]: #tymethod.from_iter
/// [`Iterator`]: trait.Iterator.html
/// [`collect`]: trait.Iterator.html#method.collect
///
/// See also: [`IntoIterator`].
///
/// [`IntoIterator`]: trait.IntoIterator.html
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::iter::FromIterator;
///
/// let five_fives = std::iter::repeat(5).take(5);
///
/// let v = Vec::from_iter(five_fives);
///
/// assert_eq!(v, vec![5, 5, 5, 5, 5]);
/// ```
///
/// Using [`collect`] to implicitly use `FromIterator`:
///
/// ```
/// let five_fives = std::iter::repeat(5).take(5);
///
/// let v: Vec<i32> = five_fives.collect();
///
/// assert_eq!(v, vec![5, 5, 5, 5, 5]);
/// ```
///
/// Implementing `FromIterator` for your type:
///
/// ```
/// use std::iter::FromIterator;
///
/// // A sample collection, that's just a wrapper over Vec<T>
/// #[derive(Debug)]
/// struct MyCollection(Vec<i32>);
///
/// // Let's give it some methods so we can create one and add things
/// // to it.
/// impl MyCollection {
///     fn new() -> MyCollection {
///         MyCollection(Vec::new())
///     }
///
///     fn add(&mut self, elem: i32) {
///         self.0.push(elem);
///     }
/// }
///
/// // and we'll implement FromIterator
/// impl FromIterator<i32> for MyCollection {
///     fn from_iter<I: IntoIterator<Item=i32>>(iter: I) -> Self {
///         let mut c = MyCollection::new();
///
///         for i in iter {
///             c.add(i);
///         }
///
///         c
///     }
/// }
///
/// // Now we can make a new iterator...
/// let iter = (0..5).into_iter();
///
/// // ... and make a MyCollection out of it
/// let c = MyCollection::from_iter(iter);
///
/// assert_eq!(c.0, vec![0, 1, 2, 3, 4]);
///
/// // collect works too!
///
/// let iter = (0..5).into_iter();
/// let c: MyCollection = iter.collect();
///
/// assert_eq!(c.0, vec![0, 1, 2, 3, 4]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented="a collection of type `{Self}` cannot be \
                          built from an iterator over elements of type `{A}`"]
pub trait FromIterator<A>: Sized {
    /// Creates a value from an iterator.
    ///
    /// See the [module-level documentation] for more.
    ///
    /// [module-level documentation]: index.html
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::iter::FromIterator;
    ///
    /// let five_fives = std::iter::repeat(5).take(5);
    ///
    /// let v = Vec::from_iter(five_fives);
    ///
    /// assert_eq!(v, vec![5, 5, 5, 5, 5]);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    fn from_iter<T: IntoIterator<Item=A>>(iter: T) -> Self;
}

/// Conversion into an `Iterator`.
///
/// By implementing `IntoIterator` for a type, you define how it will be
/// converted to an iterator. This is common for types which describe a
/// collection of some kind.
///
/// One benefit of implementing `IntoIterator` is that your type will [work
/// with Rust's `for` loop syntax](index.html#for-loops-and-intoiterator).
///
/// See also: [`FromIterator`].
///
/// [`FromIterator`]: trait.FromIterator.html
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let v = vec![1, 2, 3];
/// let mut iter = v.into_iter();
///
/// assert_eq!(Some(1), iter.next());
/// assert_eq!(Some(2), iter.next());
/// assert_eq!(Some(3), iter.next());
/// assert_eq!(None, iter.next());
/// ```
/// Implementing `IntoIterator` for your type:
///
/// ```
/// // A sample collection, that's just a wrapper over Vec<T>
/// #[derive(Debug)]
/// struct MyCollection(Vec<i32>);
///
/// // Let's give it some methods so we can create one and add things
/// // to it.
/// impl MyCollection {
///     fn new() -> MyCollection {
///         MyCollection(Vec::new())
///     }
///
///     fn add(&mut self, elem: i32) {
///         self.0.push(elem);
///     }
/// }
///
/// // and we'll implement IntoIterator
/// impl IntoIterator for MyCollection {
///     type Item = i32;
///     type IntoIter = ::std::vec::IntoIter<i32>;
///
///     fn into_iter(self) -> Self::IntoIter {
///         self.0.into_iter()
///     }
/// }
///
/// // Now we can make a new collection...
/// let mut c = MyCollection::new();
///
/// // ... add some stuff to it ...
/// c.add(0);
/// c.add(1);
/// c.add(2);
///
/// // ... and then turn it into an Iterator:
/// for (i, n) in c.into_iter().enumerate() {
///     assert_eq!(i as i32, n);
/// }
/// ```
///
/// It is common to use `IntoIterator` as a trait bound. This allows
/// the input collection type to change, so long as it is still an
/// iterator. Additional bounds can be specified by restricting on
/// `Item`:
///
/// ```rust
/// fn collect_as_strings<T>(collection: T) -> Vec<String>
///     where T: IntoIterator,
///           T::Item : std::fmt::Debug,
/// {
///     collection
///         .into_iter()
///         .map(|item| format!("{:?}", item))
///         .collect()
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait IntoIterator {
    /// The type of the elements being iterated over.
    #[stable(feature = "rust1", since = "1.0.0")]
    type Item;

    /// Which kind of iterator are we turning this into?
    #[stable(feature = "rust1", since = "1.0.0")]
    type IntoIter: Iterator<Item=Self::Item>;

    /// Creates an iterator from a value.
    ///
    /// See the [module-level documentation] for more.
    ///
    /// [module-level documentation]: index.html
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let v = vec![1, 2, 3];
    /// let mut iter = v.into_iter();
    ///
    /// assert_eq!(Some(1), iter.next());
    /// assert_eq!(Some(2), iter.next());
    /// assert_eq!(Some(3), iter.next());
    /// assert_eq!(None, iter.next());
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    fn into_iter(self) -> Self::IntoIter;
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<I: Iterator> IntoIterator for I {
    type Item = I::Item;
    type IntoIter = I;

    fn into_iter(self) -> I {
        self
    }
}

/// Extend a collection with the contents of an iterator.
///
/// Iterators produce a series of values, and collections can also be thought
/// of as a series of values. The `Extend` trait bridges this gap, allowing you
/// to extend a collection by including the contents of that iterator. When
/// extending a collection with an already existing key, that entry is updated
/// or, in the case of collections that permit multiple entries with equal
/// keys, that entry is inserted.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// // You can extend a String with some chars:
/// let mut message = String::from("The first three letters are: ");
///
/// message.extend(&['a', 'b', 'c']);
///
/// assert_eq!("abc", &message[29..32]);
/// ```
///
/// Implementing `Extend`:
///
/// ```
/// // A sample collection, that's just a wrapper over Vec<T>
/// #[derive(Debug)]
/// struct MyCollection(Vec<i32>);
///
/// // Let's give it some methods so we can create one and add things
/// // to it.
/// impl MyCollection {
///     fn new() -> MyCollection {
///         MyCollection(Vec::new())
///     }
///
///     fn add(&mut self, elem: i32) {
///         self.0.push(elem);
///     }
/// }
///
/// // since MyCollection has a list of i32s, we implement Extend for i32
/// impl Extend<i32> for MyCollection {
///
///     // This is a bit simpler with the concrete type signature: we can call
///     // extend on anything which can be turned into an Iterator which gives
///     // us i32s. Because we need i32s to put into MyCollection.
///     fn extend<T: IntoIterator<Item=i32>>(&mut self, iter: T) {
///
///         // The implementation is very straightforward: loop through the
///         // iterator, and add() each element to ourselves.
///         for elem in iter {
///             self.add(elem);
///         }
///     }
/// }
///
/// let mut c = MyCollection::new();
///
/// c.add(5);
/// c.add(6);
/// c.add(7);
///
/// // let's extend our collection with three more numbers
/// c.extend(vec![1, 2, 3]);
///
/// // we've added these elements onto the end
/// assert_eq!("MyCollection([5, 6, 7, 1, 2, 3])", format!("{:?}", c));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Extend<A> {
    /// Extends a collection with the contents of an iterator.
    ///
    /// As this is the only method for this trait, the [trait-level] docs
    /// contain more details.
    ///
    /// [trait-level]: trait.Extend.html
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// // You can extend a String with some chars:
    /// let mut message = String::from("abc");
    ///
    /// message.extend(['d', 'e', 'f'].iter());
    ///
    /// assert_eq!("abcdef", &message);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    fn extend<T: IntoIterator<Item=A>>(&mut self, iter: T);
}

#[stable(feature = "extend_for_unit", since = "1.28.0")]
impl Extend<()> for () {
    fn extend<T: IntoIterator<Item = ()>>(&mut self, iter: T) {
        iter.into_iter().for_each(drop)
    }
}

/// An iterator able to yield elements from both ends.
///
/// Something that implements `DoubleEndedIterator` has one extra capability
/// over something that implements [`Iterator`]: the ability to also take
/// `Item`s from the back, as well as the front.
///
/// It is important to note that both back and forth work on the same range,
/// and do not cross: iteration is over when they meet in the middle.
///
/// In a similar fashion to the [`Iterator`] protocol, once a
/// `DoubleEndedIterator` returns `None` from a `next_back()`, calling it again
/// may or may not ever return `Some` again. `next()` and `next_back()` are
/// interchangeable for this purpose.
///
/// [`Iterator`]: trait.Iterator.html
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let numbers = vec![1, 2, 3, 4, 5, 6];
///
/// let mut iter = numbers.iter();
///
/// assert_eq!(Some(&1), iter.next());
/// assert_eq!(Some(&6), iter.next_back());
/// assert_eq!(Some(&5), iter.next_back());
/// assert_eq!(Some(&2), iter.next());
/// assert_eq!(Some(&3), iter.next());
/// assert_eq!(Some(&4), iter.next());
/// assert_eq!(None, iter.next());
/// assert_eq!(None, iter.next_back());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait DoubleEndedIterator: Iterator {
    /// Removes and returns an element from the end of the iterator.
    ///
    /// Returns `None` when there are no more elements.
    ///
    /// The [trait-level] docs contain more details.
    ///
    /// [trait-level]: trait.DoubleEndedIterator.html
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let numbers = vec![1, 2, 3, 4, 5, 6];
    ///
    /// let mut iter = numbers.iter();
    ///
    /// assert_eq!(Some(&1), iter.next());
    /// assert_eq!(Some(&6), iter.next_back());
    /// assert_eq!(Some(&5), iter.next_back());
    /// assert_eq!(Some(&2), iter.next());
    /// assert_eq!(Some(&3), iter.next());
    /// assert_eq!(Some(&4), iter.next());
    /// assert_eq!(None, iter.next());
    /// assert_eq!(None, iter.next_back());
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    fn next_back(&mut self) -> Option<Self::Item>;

    /// This is the reverse version of [`try_fold()`]: it takes elements
    /// starting from the back of the iterator.
    ///
    /// [`try_fold()`]: trait.Iterator.html#method.try_fold
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let a = ["1", "2", "3"];
    /// let sum = a.iter()
    ///     .map(|&s| s.parse::<i32>())
    ///     .try_rfold(0, |acc, x| x.and_then(|y| Ok(acc + y)));
    /// assert_eq!(sum, Ok(6));
    /// ```
    ///
    /// Short-circuiting:
    ///
    /// ```
    /// let a = ["1", "rust", "3"];
    /// let mut it = a.iter();
    /// let sum = it
    ///     .by_ref()
    ///     .map(|&s| s.parse::<i32>())
    ///     .try_rfold(0, |acc, x| x.and_then(|y| Ok(acc + y)));
    /// assert!(sum.is_err());
    ///
    /// // Because it short-circuited, the remaining elements are still
    /// // available through the iterator.
    /// assert_eq!(it.next_back(), Some(&"1"));
    /// ```
    #[inline]
    #[stable(feature = "iterator_try_fold", since = "1.27.0")]
    fn try_rfold<B, F, R>(&mut self, init: B, mut f: F) -> R where
        Self: Sized, F: FnMut(B, Self::Item) -> R, R: Try<Ok=B>
    {
        let mut accum = init;
        while let Some(x) = self.next_back() {
            accum = f(accum, x)?;
        }
        Try::from_ok(accum)
    }

    /// An iterator method that reduces the iterator's elements to a single,
    /// final value, starting from the back.
    ///
    /// This is the reverse version of [`fold()`]: it takes elements starting from
    /// the back of the iterator.
    ///
    /// `rfold()` takes two arguments: an initial value, and a closure with two
    /// arguments: an 'accumulator', and an element. The closure returns the value that
    /// the accumulator should have for the next iteration.
    ///
    /// The initial value is the value the accumulator will have on the first
    /// call.
    ///
    /// After applying this closure to every element of the iterator, `rfold()`
    /// returns the accumulator.
    ///
    /// This operation is sometimes called 'reduce' or 'inject'.
    ///
    /// Folding is useful whenever you have a collection of something, and want
    /// to produce a single value from it.
    ///
    /// [`fold()`]: trait.Iterator.html#method.fold
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let a = [1, 2, 3];
    ///
    /// // the sum of all of the elements of a
    /// let sum = a.iter()
    ///            .rfold(0, |acc, &x| acc + x);
    ///
    /// assert_eq!(sum, 6);
    /// ```
    ///
    /// This example builds a string, starting with an initial value
    /// and continuing with each element from the back until the front:
    ///
    /// ```
    /// let numbers = [1, 2, 3, 4, 5];
    ///
    /// let zero = "0".to_string();
    ///
    /// let result = numbers.iter().rfold(zero, |acc, &x| {
    ///     format!("({} + {})", x, acc)
    /// });
    ///
    /// assert_eq!(result, "(1 + (2 + (3 + (4 + (5 + 0)))))");
    /// ```
    #[inline]
    #[stable(feature = "iter_rfold", since = "1.27.0")]
    fn rfold<B, F>(mut self, accum: B, mut f: F) -> B where
        Self: Sized, F: FnMut(B, Self::Item) -> B,
    {
        self.try_rfold(accum, move |acc, x| Ok::<B, !>(f(acc, x))).unwrap()
    }

    /// Searches for an element of an iterator from the back that satisfies a predicate.
    ///
    /// `rfind()` takes a closure that returns `true` or `false`. It applies
    /// this closure to each element of the iterator, starting at the end, and if any
    /// of them return `true`, then `rfind()` returns [`Some(element)`]. If they all return
    /// `false`, it returns [`None`].
    ///
    /// `rfind()` is short-circuiting; in other words, it will stop processing
    /// as soon as the closure returns `true`.
    ///
    /// Because `rfind()` takes a reference, and many iterators iterate over
    /// references, this leads to a possibly confusing situation where the
    /// argument is a double reference. You can see this effect in the
    /// examples below, with `&&x`.
    ///
    /// [`Some(element)`]: ../../std/option/enum.Option.html#variant.Some
    /// [`None`]: ../../std/option/enum.Option.html#variant.None
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// let a = [1, 2, 3];
    ///
    /// assert_eq!(a.iter().rfind(|&&x| x == 2), Some(&2));
    ///
    /// assert_eq!(a.iter().rfind(|&&x| x == 5), None);
    /// ```
    ///
    /// Stopping at the first `true`:
    ///
    /// ```
    /// let a = [1, 2, 3];
    ///
    /// let mut iter = a.iter();
    ///
    /// assert_eq!(iter.rfind(|&&x| x == 2), Some(&2));
    ///
    /// // we can still use `iter`, as there are more elements.
    /// assert_eq!(iter.next_back(), Some(&1));
    /// ```
    #[inline]
    #[stable(feature = "iter_rfind", since = "1.27.0")]
    fn rfind<P>(&mut self, mut predicate: P) -> Option<Self::Item> where
        Self: Sized,
        P: FnMut(&Self::Item) -> bool
    {
        self.try_rfold((), move |(), x| {
            if predicate(&x) { LoopState::Break(x) }
            else { LoopState::Continue(()) }
        }).break_value()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, I: DoubleEndedIterator + ?Sized> DoubleEndedIterator for &'a mut I {
    fn next_back(&mut self) -> Option<I::Item> { (**self).next_back() }
}

/// An iterator that knows its exact length.
///
/// Many [`Iterator`]s don't know how many times they will iterate, but some do.
/// If an iterator knows how many times it can iterate, providing access to
/// that information can be useful. For example, if you want to iterate
/// backwards, a good start is to know where the end is.
///
/// When implementing an `ExactSizeIterator`, you must also implement
/// [`Iterator`]. When doing so, the implementation of [`size_hint`] *must*
/// return the exact size of the iterator.
///
/// [`Iterator`]: trait.Iterator.html
/// [`size_hint`]: trait.Iterator.html#method.size_hint
///
/// The [`len`] method has a default implementation, so you usually shouldn't
/// implement it. However, you may be able to provide a more performant
/// implementation than the default, so overriding it in this case makes sense.
///
/// [`len`]: #method.len
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// // a finite range knows exactly how many times it will iterate
/// let five = 0..5;
///
/// assert_eq!(5, five.len());
/// ```
///
/// In the [module level docs][moddocs], we implemented an [`Iterator`],
/// `Counter`. Let's implement `ExactSizeIterator` for it as well:
///
/// [moddocs]: index.html
///
/// ```
/// # struct Counter {
/// #     count: usize,
/// # }
/// # impl Counter {
/// #     fn new() -> Counter {
/// #         Counter { count: 0 }
/// #     }
/// # }
/// # impl Iterator for Counter {
/// #     type Item = usize;
/// #     fn next(&mut self) -> Option<usize> {
/// #         self.count += 1;
/// #         if self.count < 6 {
/// #             Some(self.count)
/// #         } else {
/// #             None
/// #         }
/// #     }
/// # }
/// impl ExactSizeIterator for Counter {
///     // We can easily calculate the remaining number of iterations.
///     fn len(&self) -> usize {
///         5 - self.count
///     }
/// }
///
/// // And now we can use it!
///
/// let counter = Counter::new();
///
/// assert_eq!(5, counter.len());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait ExactSizeIterator: Iterator {
    /// Returns the exact number of times the iterator will iterate.
    ///
    /// This method has a default implementation, so you usually should not
    /// implement it directly. However, if you can provide a more efficient
    /// implementation, you can do so. See the [trait-level] docs for an
    /// example.
    ///
    /// This function has the same safety guarantees as the [`size_hint`]
    /// function.
    ///
    /// [trait-level]: trait.ExactSizeIterator.html
    /// [`size_hint`]: trait.Iterator.html#method.size_hint
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// // a finite range knows exactly how many times it will iterate
    /// let five = 0..5;
    ///
    /// assert_eq!(5, five.len());
    /// ```
    #[inline]
    #[stable(feature = "rust1", since = "1.0.0")]
    fn len(&self) -> usize {
        let (lower, upper) = self.size_hint();
        // Note: This assertion is overly defensive, but it checks the invariant
        // guaranteed by the trait. If this trait were rust-internal,
        // we could use debug_assert!; assert_eq! will check all Rust user
        // implementations too.
        assert_eq!(upper, Some(lower));
        lower
    }

    /// Returns whether the iterator is empty.
    ///
    /// This method has a default implementation using `self.len()`, so you
    /// don't need to implement it yourself.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// #![feature(exact_size_is_empty)]
    ///
    /// let mut one_element = std::iter::once(0);
    /// assert!(!one_element.is_empty());
    ///
    /// assert_eq!(one_element.next(), Some(0));
    /// assert!(one_element.is_empty());
    ///
    /// assert_eq!(one_element.next(), None);
    /// ```
    #[inline]
    #[unstable(feature = "exact_size_is_empty", issue = "35428")]
    fn is_empty(&self) -> bool {
        self.len() == 0
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, I: ExactSizeIterator + ?Sized> ExactSizeIterator for &'a mut I {
    fn len(&self) -> usize {
        (**self).len()
    }
    fn is_empty(&self) -> bool {
        (**self).is_empty()
    }
}

/// Trait to represent types that can be created by summing up an iterator.
///
/// This trait is used to implement the [`sum`] method on iterators. Types which
/// implement the trait can be generated by the [`sum`] method. Like
/// [`FromIterator`] this trait should rarely be called directly and instead
/// interacted with through [`Iterator::sum`].
///
/// [`sum`]: ../../std/iter/trait.Sum.html#tymethod.sum
/// [`FromIterator`]: ../../std/iter/trait.FromIterator.html
/// [`Iterator::sum`]: ../../std/iter/trait.Iterator.html#method.sum
#[stable(feature = "iter_arith_traits", since = "1.12.0")]
pub trait Sum<A = Self>: Sized {
    /// Method which takes an iterator and generates `Self` from the elements by
    /// "summing up" the items.
    #[stable(feature = "iter_arith_traits", since = "1.12.0")]
    fn sum<I: Iterator<Item=A>>(iter: I) -> Self;
}

/// Trait to represent types that can be created by multiplying elements of an
/// iterator.
///
/// This trait is used to implement the [`product`] method on iterators. Types
/// which implement the trait can be generated by the [`product`] method. Like
/// [`FromIterator`] this trait should rarely be called directly and instead
/// interacted with through [`Iterator::product`].
///
/// [`product`]: ../../std/iter/trait.Product.html#tymethod.product
/// [`FromIterator`]: ../../std/iter/trait.FromIterator.html
/// [`Iterator::product`]: ../../std/iter/trait.Iterator.html#method.product
#[stable(feature = "iter_arith_traits", since = "1.12.0")]
pub trait Product<A = Self>: Sized {
    /// Method which takes an iterator and generates `Self` from the elements by
    /// multiplying the items.
    #[stable(feature = "iter_arith_traits", since = "1.12.0")]
    fn product<I: Iterator<Item=A>>(iter: I) -> Self;
}

// NB: explicitly use Add and Mul here to inherit overflow checks
macro_rules! integer_sum_product {
    (@impls $zero:expr, $one:expr, #[$attr:meta], $($a:ty)*) => ($(
        #[$attr]
        impl Sum for $a {
            fn sum<I: Iterator<Item=$a>>(iter: I) -> $a {
                iter.fold($zero, Add::add)
            }
        }

        #[$attr]
        impl Product for $a {
            fn product<I: Iterator<Item=$a>>(iter: I) -> $a {
                iter.fold($one, Mul::mul)
            }
        }

        #[$attr]
        impl<'a> Sum<&'a $a> for $a {
            fn sum<I: Iterator<Item=&'a $a>>(iter: I) -> $a {
                iter.fold($zero, Add::add)
            }
        }

        #[$attr]
        impl<'a> Product<&'a $a> for $a {
            fn product<I: Iterator<Item=&'a $a>>(iter: I) -> $a {
                iter.fold($one, Mul::mul)
            }
        }
    )*);
    ($($a:ty)*) => (
        integer_sum_product!(@impls 0, 1,
                #[stable(feature = "iter_arith_traits", since = "1.12.0")],
                $($a)+);
        integer_sum_product!(@impls Wrapping(0), Wrapping(1),
                #[stable(feature = "wrapping_iter_arith", since = "1.14.0")],
                $(Wrapping<$a>)+);
    );
}

macro_rules! float_sum_product {
    ($($a:ident)*) => ($(
        #[stable(feature = "iter_arith_traits", since = "1.12.0")]
        impl Sum for $a {
            fn sum<I: Iterator<Item=$a>>(iter: I) -> $a {
                iter.fold(0.0, |a, b| a + b)
            }
        }

        #[stable(feature = "iter_arith_traits", since = "1.12.0")]
        impl Product for $a {
            fn product<I: Iterator<Item=$a>>(iter: I) -> $a {
                iter.fold(1.0, |a, b| a * b)
            }
        }

        #[stable(feature = "iter_arith_traits", since = "1.12.0")]
        impl<'a> Sum<&'a $a> for $a {
            fn sum<I: Iterator<Item=&'a $a>>(iter: I) -> $a {
                iter.fold(0.0, |a, b| a + *b)
            }
        }

        #[stable(feature = "iter_arith_traits", since = "1.12.0")]
        impl<'a> Product<&'a $a> for $a {
            fn product<I: Iterator<Item=&'a $a>>(iter: I) -> $a {
                iter.fold(1.0, |a, b| a * *b)
            }
        }
    )*)
}

integer_sum_product! { i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize }
float_sum_product! { f32 f64 }

/// An iterator adapter that produces output as long as the underlying
/// iterator produces `Result::Ok` values.
///
/// If an error is encountered, the iterator stops and the error is
/// stored. The error may be recovered later via `reconstruct`.
struct ResultShunt<I, E> {
    iter: I,
    error: Option<E>,
}

impl<I, T, E> ResultShunt<I, E>
    where I: Iterator<Item = Result<T, E>>
{
    /// Process the given iterator as if it yielded a `T` instead of a
    /// `Result<T, _>`. Any errors will stop the inner iterator and
    /// the overall result will be an error.
    pub fn process<F, U>(iter: I, mut f: F) -> Result<U, E>
        where F: FnMut(&mut Self) -> U
    {
        let mut shunt = ResultShunt::new(iter);
        let value = f(shunt.by_ref());
        shunt.reconstruct(value)
    }

    fn new(iter: I) -> Self {
        ResultShunt {
            iter,
            error: None,
        }
    }

    /// Consume the adapter and rebuild a `Result` value. This should
    /// *always* be called, otherwise any potential error would be
    /// lost.
    fn reconstruct<U>(self, val: U) -> Result<U, E> {
        match self.error {
            None => Ok(val),
            Some(e) => Err(e),
        }
    }
}

impl<I, T, E> Iterator for ResultShunt<I, E>
    where I: Iterator<Item = Result<T, E>>
{
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        match self.iter.next() {
            Some(Ok(v)) => Some(v),
            Some(Err(e)) => {
                self.error = Some(e);
                None
            }
            None => None,
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        if self.error.is_some() {
            (0, Some(0))
        } else {
            let (_, upper) = self.iter.size_hint();
            (0, upper)
        }
    }
}

#[stable(feature = "iter_arith_traits_result", since="1.16.0")]
impl<T, U, E> Sum<Result<U, E>> for Result<T, E>
    where T: Sum<U>,
{
    /// Takes each element in the `Iterator`: if it is an `Err`, no further
    /// elements are taken, and the `Err` is returned. Should no `Err` occur,
    /// the sum of all elements is returned.
    ///
    /// # Examples
    ///
    /// This sums up every integer in a vector, rejecting the sum if a negative
    /// element is encountered:
    ///
    /// ```
    /// let v = vec![1, 2];
    /// let res: Result<i32, &'static str> = v.iter().map(|&x: &i32|
    ///     if x < 0 { Err("Negative element found") }
    ///     else { Ok(x) }
    /// ).sum();
    /// assert_eq!(res, Ok(3));
    /// ```
    fn sum<I>(iter: I) -> Result<T, E>
        where I: Iterator<Item = Result<U, E>>,
    {
        ResultShunt::process(iter, |i| i.sum())
    }
}

#[stable(feature = "iter_arith_traits_result", since="1.16.0")]
impl<T, U, E> Product<Result<U, E>> for Result<T, E>
    where T: Product<U>,
{
    /// Takes each element in the `Iterator`: if it is an `Err`, no further
    /// elements are taken, and the `Err` is returned. Should no `Err` occur,
    /// the product of all elements is returned.
    fn product<I>(iter: I) -> Result<T, E>
        where I: Iterator<Item = Result<U, E>>,
    {
        ResultShunt::process(iter, |i| i.product())
    }
}

/// An iterator that always continues to yield `None` when exhausted.
///
/// Calling next on a fused iterator that has returned `None` once is guaranteed
/// to return [`None`] again. This trait should be implemented by all iterators
/// that behave this way because it allows for some significant optimizations.
///
/// Note: In general, you should not use `FusedIterator` in generic bounds if
/// you need a fused iterator. Instead, you should just call [`Iterator::fuse`]
/// on the iterator. If the iterator is already fused, the additional [`Fuse`]
/// wrapper will be a no-op with no performance penalty.
///
/// [`None`]: ../../std/option/enum.Option.html#variant.None
/// [`Iterator::fuse`]: ../../std/iter/trait.Iterator.html#method.fuse
/// [`Fuse`]: ../../std/iter/struct.Fuse.html
#[stable(feature = "fused", since = "1.26.0")]
pub trait FusedIterator: Iterator {}

#[stable(feature = "fused", since = "1.26.0")]
impl<'a, I: FusedIterator + ?Sized> FusedIterator for &'a mut I {}

/// An iterator that reports an accurate length using size_hint.
///
/// The iterator reports a size hint where it is either exact
/// (lower bound is equal to upper bound), or the upper bound is [`None`].
/// The upper bound must only be [`None`] if the actual iterator length is
/// larger than [`usize::MAX`]. In that case, the lower bound must be
/// [`usize::MAX`], resulting in a [`.size_hint`] of `(usize::MAX, None)`.
///
/// The iterator must produce exactly the number of elements it reported
/// or diverge before reaching the end.
///
/// # Safety
///
/// This trait must only be implemented when the contract is upheld.
/// Consumers of this trait must inspect [`.size_hint`]’s upper bound.
///
/// [`None`]: ../../std/option/enum.Option.html#variant.None
/// [`usize::MAX`]: ../../std/usize/constant.MAX.html
/// [`.size_hint`]: ../../std/iter/trait.Iterator.html#method.size_hint
#[unstable(feature = "trusted_len", issue = "37572")]
pub unsafe trait TrustedLen : Iterator {}

#[unstable(feature = "trusted_len", issue = "37572")]
unsafe impl<'a, I: TrustedLen + ?Sized> TrustedLen for &'a mut I {}